Analytical Standards for Regression-based Predictive Analytics : Methodologies, Naming Conventions and Coding Practices

Daniel Chertok, Ari Robicsek Clinical Analytics Team ©NorthShore University HealthSystem

 6^{th} February, 2020

Abstract

This document proposes a set of methodology and programming standards for the Clinical Analytics team. It is intended as a set of guidelines that will be developed over time as the needs of the team evolve. Guidelines include a review of statistics, survival analysis, general programming techniques, naming conventions, R coding practices and a general approach to tackling most common types of applied predictive analysis handled by the team.

Contents

1	Int	roduction	7
2	Pre	eferred terminology	9
3	\mathbf{Me}	thodology	12
	3.1	General approach	12
	3.2	Regression	14
	3.3	Using logistic regression for classification problems	20
	3.4	Survival modeling	25
	3.5	Data scrubbing	29
	3.6	Outliers	30
	3.7	Predictive variable selection	30
		3.7.1 Removing highly correlated variables	31
		3.7.2 Computing a univariate odds ratio	37
		3.7.3 Computing a multivariate odds ratio	51
		3.7.4 Assessing model coefficients	62
	3.8	Transformation of variables	64
	3.9	Including interaction terms in the model	65
	3.10	Model validation	69
		3.10.1 Linear regression	71
		3.10.2 Logistic regression	72
		3.10.3 Validation of temporal datasets ¹	75
	3.11	Predicting future outcomes	77
	3.12	Evaluating model performance	77
		3.12.1 Receiver operating characteristics curve	78
		3.12.2 Summary of model performance metrics	81
4	Pre	esentation of results	83
	4.1	Output data storage	83
	4.2	Output data naming conventions	83
	4.3	Presentation format	84
5	Dat	ta storage	85
	5.1	Input data storage	85
		5.1.1 Nomenclature of input variables	85
	5.2	Formatting and storage of intermediate results	96
C	2016	NorthShore University HealthSystem	2

6 Coding practices 96
6.1 Revision control
6.2 Code storage
6.3 Code review
6.4 Naming conventions
6.5 Writing quality code
6.5.1 R
6.6 Testing and QA
Appendix A Additional tools for data analysis 105
A.1 Comparing two datasets
A.1.1 Testing proportions
Appendix B Sequence of steps for developing a logistic regression model in R 111 111 Appendix C Sample code used to process the running COPD augurable 116
example 116
Appendix D Sample code used to implement the Cox propor- tional hazard model in the heart failure mortality example128
Appendix E R package manuals 138
E.1 Package NS.CA.dataUtils - data manipulation
E.2 Package NS.CA.dateUtils - date arithmetic
E.3 Package NS.CA.mathUtils - math functions (re)defined 138
E.4 Package NS.CA.modelUtils - model performance descriptors
and graphics
E.5 Package NS.CA.plotUtils - plotting utilities
E.6 Package NS.CA.statUtils - statistical functions 138

3.1	A generic algorithm for proceeding with an analytical project	
	within the framework of Clinical Analytics	13
3.2	Linear regression: an illustration	16
3.3	Decision tree for linear regression problems	17
3.4	Decision tree for logistic regression classification problems.	21
3.5	Logistic regression fit: an illustration	22

portional hazard model performance for predicting one-year	
mortality among heart failure patients	28
3.7 An algorithm for selecting predictive variables	32
3.8 COPD Example: correlation matrix of binary, interval and	
continuous predictive variables	36
3.9 COPD Example: correlation matrix of continuous/interval	
predictive variables	37
3.10 COPD Example: correlation matrix of binary predictive vari-	
ables	39
3.11 Example: Probability of hospitalization from univariate lo-	
gistic regression on patient age	53
3.12 Example: variable transformation from x to x^4	66
3.13 AUC, F_1 score score and Matthews' correlation coefficient of	
the strictly linear logistic regression model for the hypothet-	
ical hospitalization example in Table 3.21	69
3.14 AUC, F_1 score score and Matthews' correlation coefficient of	
the logistic regression model with a cross term for the hypo-	
the tical hospitalization example in Table 3.21	71
3.15 AUC, F_1 score score and Matthews' correlation coefficient of	
the logistic regression model for COPD.	74
3.16 Sample receiver operating characteristic (ROC) curve graph.	80
3.17 Sample lift curve graph	81

List of Tables

3	.1	Example: Logistic regression	18
3	.2	Example: Logistic regression	24
3	.3	Missing data imputation methods	29
3	.4	Example: Variable selection for COPD logistic regression	
		model	33
3	.5	COPD model: Highly correlated binary variables	35
3	.6	COPD model: Highly correlated continuous/interval variables	38
3	.7	Predictive variable and outcome of interest	38
3	.8	Example: Predictive variable and outcome of interest	40
3	.9	Example: Blood utilization data for building one-vs.the-rest	
		contingency $table^1$	41
3	.10	Example: <i>One-vs.the-rest</i> contingency tables by hospital	41
3	.11	Example: Predictive variable and outcome of interest	42

3.12	Example: Predictive variable and outcome of interest, rolled-
	up "Marital Status"
3.13	Example: Odds ratio for "Divorced" vs. "Married" 43
3.14	Example: <i>Benchmark</i> odds ratios and their statistics 43
3.15	Example: Patient outcome by age
3.16	Example: Univariate odds ratio statistics for COPD logistic
	regression model - binary and indicator variables
3.17	Example: Univariate odds ratio statistics for COPD logistic
	regression model - interval and continuous variables 49
3.18	. Example: Multivariate odds ratio statistics for COPD lo-
	gistic regression model
3.19	. Example: COPD logistic regression model coefficients and
	their statistics
3.20	Example: Variable transformation
3.21	Example: Hypothetical hospitalizations
3.22	Example: Comparison of the Elixhauser admission model
	with the random selection benchmark for 1,000 riskiest patients. 75
3.23	Example: 10 patients at highest risk of COPD admission
	from a population of 2,049
3.24	Tabularized relations between truth/falseness of the null hy-
	pothesis and outcomes of the test
3.25	Example: 10 patients at highest risk of COPD admission
	from a population of 2,049 with model performance metrics
	included
4.1	Naming convention for output files
5.1	Input variable nomenclature
5.2	Naming convention for interim output files
6.1	Naming conventions
A.1	Statistical tests used to confirm the statistical significance of
	difference between data sets; parts reproduced from $[17]$ by
	permission from Professor James D. Leeper 106
A.2	Sample blood transfusion statistics for Q2 FY2014 110
B.1	An algorithm for developing a logistic regression-based pre-
	diction or classification model

Listings

3.1	Example: R code for linear regression.	 	18
3.2	Example: R linear regression model summary output.	 	19

3.3	Example: R code for logistic regression.	24
3.4	Example: R logistic regression model summary output	24
3.5	Example: R code for plotting a covariance matrix.	36
3.6	Example: R code for generating the logit of age-dependent	
	propability of hospitalization.	52
3.7	Example: R code for linear regression	67
3.8	Example: Hypothetical hospitalizations.	70
C.1	Example: R code for COPD logistic regression.	116
D.1	Example: R code for Cox proportional hazard modeling	128

1 Introduction

Predictive modeling tasks handled by Clinical Analytics fall into one of two categories: *classification* and *regression*. Classification answers the question, "What group of patients does this individual belong to?" Its outcome is a categorical - quite often, binary - variable. Regression answers the question, "How much or how many?" Its outcome is a cardinal variable. While the outcomes of these two types of mathematical models are different, the underlying methodologies are very similar and are considered in Sections 3.3 and 3.2. A combination approach may be appropriate for problems requiring the development of quantification metrics for events of interest: first, identify (or classify) potential outcomes, then evaluate the impact of each outcome separately. In this case, a classification algorithm should be followed with a regression; more often than not, quantification of only the positive outcome is of interest to us.

An important - though sometimes overlooked - step in streamlining the research and development (R&D) methodology is agreeing on standardized terminology for the research process. A well-developed glossary of terms (see Section 2) can assure that identical tasks or processes are described in identical terms, a concept similar to "data integrity" as defined by the principles of database design [6].

Anecdotal evidence suggests that a data scientist (whatever this term currently entails) spends 90% of her time scrubbing the data [29] and only 10% of it doing what she learned in her school's Advanced Scientific Fortunetelling program. Like an experienced cook who appreciates the role of quality ingredients in meal preparation, a sensible data scientist may be able to achieve good results by simply ensuring that the data ingested into her algorithm is clean. Agreed-upon procedures (AUP) for data cleansing and storage are covered in 3.5 and 5.1.

Consistent, scalable development of reliable and reusable software is an important part of introducing the developed methodologies into production. A collection of good coding practices relevant to predictive analytic development is presented in Section 6. A good foundation for developing robust code and assuring business continuity includes

- proper revision control practices (6.1),
- accessible and consistently named code repositories and development sandboxes (6.2) and
- readable and transparent code modules (6.4, 6.5) in R (6.5.1).

Once an algorithm has been prototyped and implemented to the developers' satisfaction, the responsibility for putting it into everyday use it shifts to the production team. The process of testing, validation and verification can be drawn out and contentious unless the rules of the game are well defined in advance. Efficient practices for lightening the burden on both the original developers and the QA team are described in Section 6.6.

Finally, once the results have been validated, consistent and easy to understand presentation can facilitate their acceptance by the intended audience. Appropriate standards are covered in Section 4.

Examples contained in this manual are based on real data, however, in order to protect potentially sensitive information, the numbers have been modified and the names of the entities involved obscured where deemed necessary.

2 Preferred terminology

Nomenclature of terms

indicator variable

a variable with only two outcomes: 0 and 1, FALSE and TRUE 29, 106

binary variable

see indicator variable

dummy variable

see indicator variable

categorical variable

a variable with two or more outcomes whose values cannot be meaningfully converted into comparable numbers, e.g., ethnicity, gender, geographical region *see also* nominal variable & ordinal variable, 9, 29, 106, 107, 108

ordinal variable

a categorical variable whose values can be meaningfully ordered but not quantitatively compared, e.g., stage of cancer, education level, degree of satisfaction 29, 106, 107, 108

interval variable

a discrete variable whose values are equidistant and the zero is arbitrarily set, e.g., IQ scores, number of hospital admissions, number of children in a family *see also* continuous variable, 29, 106, 107, 108

continuous variable

a variable whose values can take on any (real) number, e.g., body mass index, systolic blood pressure, hemoglobin 29

Type I error

an incorrect rejection of the null hypothesis see also false positive

t-test

Student's t-test 106, 107

©2016 NorthShore University HealthSystem

9

true positive

an event correctly classified as having an outcome of interest 10, 11

false positive

an event incorrectly classified as having an outcome of interest *see also* Type I error, 10, 11, 79

true negative

an event correctly classified as not having an outcome of interest 11

false negative

an event incorrectly classified as not having an outcome of interest *see also* Type II error, 10, 11, 79

positive predictive value

```
also precision

PPV = \frac{number \text{ of true positives}}{number \text{ of predicted positives}}
= \frac{number \text{ of true positives}}{number \text{ of true positives} + number \text{ of false positives}} 11, 80, 82
```

relative survival probability

survival probability of a group under consideration relative to that of a benchmark group, e.g., survival probability of cancer patients relative to the general population of the same age 27

survival analysis

a branch of statistics (or, more broadly, applied mathematics) concerned with predicting failure events among a given population or group of technical objects 25

time since first diagnosis

interval of time between the first recorded or implied diagnosis assigned to the patient and the time t of interest (e.g., current time) 27

true positive rate

also sensitivity, hit rate, recall $TPR = \frac{number \text{ of true positives}}{number \text{ of true positives} + number \text{ of false negatives}} = \frac{number \text{ of true positive outcomes}}{\text{ total positive outcomes}}$ 11, 73, 78, 79, 80

specificity

```
also true negative rate

\text{TNR} = \frac{\text{true negative}}{\text{false positive+true negative}} = \frac{\text{true negative}}{\text{total negative outcomes}} 73, 78, 79, 82, 84
```

false positive rate

also fallout $FPR = \frac{false \text{ positive}}{false \text{ positive}+true negative} = \frac{false \text{ positive}}{total negative outcomes}$ 11

receiver operating characteristic (ROC) curve

A curve that visualizes the accuracy of a classification algorithm as a relationship between true positive rate and false positive rate 4, 11, 77, 80

lift curve

A curve that visualizes the relationship between true positive rate and the fraction of the population targeted by the response solicitation campaign. It is a variation on the receiver operating characteristic (ROC) curve 4, 80, 81

lift

 $\text{Lift} = \frac{\% \text{ of outcomes of interest in the population selected by the model}}{\% \text{ of outcomes of interest in the whole population}} 81, 82$

F_1 score

```
F_1 = 2 \frac{\text{positive predictive value} \times \text{true positive rate}}{\text{positive predictive value} + \text{true positive rate}} 4, 29, 69, 71, 73, 74, 78, 80, 84
```

Matthews' correlation coefficient

 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$, where TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives and FN is the number of false negatives 4, 29, 69, 71, 73, 74, 78, 80, 84

interaction term

also cross term

in a (generalized) linear model, a nonlinear term of the form $\prod_{i=1}^{m} X_i$, where X_i is the *i*-th predictive variable, *m* the order of nonlinearity; the simplest nontrivial (m = 2) case being $X_1 \times X_2$ 68, 69

3 Methodology

3.1 General approach

An outline of a general approach to solving an analytical problem is presented in Fig. 3.1.

As mentioned in Section 1, the majority of predictive analytic problems can be solved by employing one of two wide types of forecasting methodologies: regression and classification. Regression¹ should be used when the output variable² is interval or continuous, i.e., can take on any permissible value inside an interval (which may include the whole real axis). Examples of this type of problem include predicting:

- 1. a lab test result based on the patient's demographics, clinical history and other lab tests;
- 2. the number of admissions based on the previous history and calendar data;
- 3. patient management cost based on patient's data.

Logistic regression is one of the most widely practically used classification algorithms. It is easy to implement³, intuitive and can be made sufficiently accurate for most uncomplicated modeling tasks. Mathematically similar to linear regression, it⁴ can (and often should) be used when the output variable is an indicator, binary, categorical, nominal or ordinal. Examples of this type of problem include

- 1. predicting patient's risk of mortality, admission or readmission based on demographic and clinical data;
- classifying the severity of a patient's condition based on available clinical data and history;
- 3. identifying those patients among high risk population who are most likely to respond to intervention [3].

¹Or another appropriate fitting technique

²Scalar, i.e., single-valued or vector, i.e., multivalued.

 $^{^{3}}$ In fact, it is commonly implemented in many statistical packages and programming languages, including R.

⁴Or another appropriate classification technique.

Figure 3.1: A generic algorithm for proceeding with an analytical project within the framework of Clinical Analytics.

3.2 Regression

A regression problem answers the question "How much output quantity or how many items or events can be generated as a result of the process under investigation?". The solution of a regression problem can be found as a result of an optimization algorithm on a measure of the difference between predicted and actual outputs. The simplest model in this case, *linear regression*, assumes that

- there is no (measurement) error in the values of predictors and the dependent variable;
- predictor variables are
 - (statistically) independent;
 - linearly independent (not collinear), i.e., the matrix of predictors has full rank (this is separate from the condition above);
- a linear relationship of the type

$$Y_i = \beta_0 + \sum_{i=1}^M X_{ij} \beta_j , i = \overline{1, N} ,$$
 (3.1)

where N is the number of observations and M is the number of predictive variables, exists between the predictors and the output variable;

• residuals, or errors, i.e., differences between observed and predicted values of the dependent variable

$$\epsilon_i = Y_i - \hat{Y}_i , \qquad (3.2)$$

where \hat{Y}_i , $i = \overline{1, N}$ are the predicted and Y_i , $i = \overline{1, N}$ are the actual values of the dependent variable, are

- distributed with a zero mean (exogeneity);
- homoscedastic (of constant variance);
- of finite variance;
- statistically independent of one another and of the independent variables.

It is sometimes assumed that residuals are normally distributed, i.e. $\epsilon \sim \mathcal{N}(0, \sigma^2)$, however, this assumption may be relaxed through the application

of the Central Limit Theorem if the number of observations is sufficiently large (exceeds the proverbial N = 30). In this simplest case, an analytical solution exists and can be found using readily available formulas. A more complex problem can be reduced to linear regression if the functional form of relationship between the predictors and the output is known *apriori*, e.g., by taking the logarithm of the outcome variable, both sides of the equation or a combination of both (*loglinear regression*, *log-log regression* or *log-linear-log regression*).

Let us assume that a linear relationship between the predictors and the dependent variable described by (3.1) does exist. In the most general case, X is an $N \times M$ matrix of predictive variables, β is an $M \times 1$ vector and β_0 is a scalar:

$$X = \begin{bmatrix} x_{11} & \cdots & x_{1M} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{NM} \end{bmatrix}, \qquad (3.3)$$

$$\beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_M \end{bmatrix}, \qquad (3.4)$$

$$Y = X\beta + \beta_0 \tag{3.5}$$

Instead of (3.3 - 3.5), we can consider an augmented $N \times (M + 1)$ matrix X_* and $(M + 1) \times 1$ vector β_* that together form an equivalent system of equations:

$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1M} \\ \vdots & \ddots & \vdots & \vdots \\ 1 & x_{N1} & \cdots & x_{NM} \end{bmatrix},$$
(3.6)

$$\beta_* = \begin{vmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_M \end{vmatrix} , \qquad (3.7)$$

$$Y = X_* \beta_* . \tag{3.8}$$

Observe that the left hand side of (3.5) is exactly the same as the left hand side of (3.8) once we set $a_0 \equiv b$. For the ease of exposition we shall drop subindex $_*$ from X_* and β_* and continue to refer to these augmented variables as X and β , i.e.,

$$Y = X\beta . (3.9)$$

©2016 NorthShore University HealthSystem

15

The solution of (3.9) can be found in the form of

$$\beta = (X^T X)^{-1} X^T y , \qquad (3.10)$$

where X^T is the transposed X $(X_{ij}^T = X_{ji})$, provided that $(X^T X)^{-1}$ exists (see, e.g., [21])

An example of a fitted curve is presented in Fig. 3.2

Linear regression illustration

Figure 3.2: Linear regression: an illustration

A common metric for assessing the quality (or *goodness-of-fit*) of linear regression is its *coefficient of determination* R^2 , defined as

$$R^{2} = 1 - \frac{Var(\epsilon)}{Var(y)} = 1 - \frac{\frac{1}{N}\sum_{i=1}^{N}\epsilon_{i}^{2}}{\frac{1}{N}\sum_{i=1}^{N}(y_{i}-\overline{y})^{2}},$$
(3.11)

since we assume $E(\epsilon) = 0$. The coefficient of determination quantifies what fraction (percentage) of the variation of the dependent variable, y, can be explained by the variation of the independent variable(s), x (via x's linear relationship to y).

A general approach to attacking regression problems is presented in Fig. 3.3. In R an ordinary linear regression model can be built using function lm.

Figure 3.3: Decision tree for linear regression problems.

Predictive variable	Outcome	Predictive variable	Outcome	Predictive variable	Outcome
1	-0.1322691	8	20.6916235	15	36.6246546
2	5.9182166	9	21.8789068	16	32.7753320
3	2.8218569	10	19.4730581	17	34.9190487
4	16.9764040	11	30.5589058	18	41.7191811
5	12.6475389	12	26.9492162	19	43.1061060
6	8.8976581	13	23.8937971	20	43.9695066
7	17.4371453	14	17.9265006		

As an example, consider the data presented in Table 3.1.

Table 3.1: Example: Logistic regression

The corresponding R code is presented in Listing 3.1.

```
set.seed(1)
x < - 1:20
xR \leftarrow rnorm(1:20)
v < -2 * x + 1 + 5 * xR
lm <− lm( y ~ x )
coef <- coef(lm)
yHat \langle -x \ast coef[2] + coef[1]
plot(x, y, main="Linear_regression_illustration", col
   ='magenta')
abline(coef=coef, col='blue')
points( x, yHat, type='p', col='blue')
for( i in 1:length( x ) ) {
  segments( x[i], yHat[i], x[i], y[i], lty='dotted',
     col='red', pch=16)
}
a <- sprintf("\%.2f", coef[2])
b \leftarrow sprintf("\%.2f", coef[1])
text(5, 35, bquote( paste( hat( y ), "=", .(a), "x_+"
   , .(b) ) )
text(5, 32, bquote( paste( "y_=", hat( y ), "+",
   epsilon ) ) )
R2 <- sprintf("\%.2f", summary(lm)$r.squared)
text(5, 29, bquote(paste(R<sup>2</sup>, "=", .(R2))))
```

summary(lm)
confint(lm)

Listing 3.1: Example: R code for linear regression.

producing the output in Listing 3.2.

Call: lm(formula = y ~ x)Residuals: Median Min 1Q3QMax -12.4038-2.58410.93732.4165 7.7252Coefficients: Estimate Std. Error t value Pr(>|t|)2.1579 0.38(Intercept) 0.81950.7092.1079 0.1801 11.70 7.56e - 10 * * *х Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , , 1 Residual standard error: 4.645 on 18 degrees of freedom Multiple R-squared: 0.8838, Adjusted R-squared: 0.8774F-statistic: 136.9 on 1 and 18 DF, p-value: 7.56e-10 2.5 %97.5 % (Intercept) -3.714035 5.353106 1.729458 2.486368х

Listing 3.2: Example: R linear regression model summary output.

It follows from Listing (3.2) that only the slope estimate is statistically significantly different from 0 at the 95% level (p < 0.05). The 95% confidence interval for the intercept is [-3.71; 5.35], and for the slope it is [1.73; 2.49]. The coefficient of determination $R^2 = 0.88$ indicates a very good fit between the data points and the developed linear model which has the form¹

 $\hat{y} = 0.8195 + 2.1079x$, (3.12)

¹The accuracy of coefficient estimates is lower than 0.5×10^{-4}

or, if we accept the null hypothesis concerning the intercept $(\beta_0 = 0)$,

$$\hat{y} = 2.1079x$$
. (3.13)

With the benefit of foresight¹, we already presented an illustration of (3.12) in Fig. 3.2.

3.3 Using logistic regression for classification problems

A classification problem answers the question "What group does this object belong to?". The answer can depend on the available data as described in Fig. 3.4. Quite often, the easiest-to-implement method is preferable since it can be deployed with the least effort and does not require infrastructure and process adjustments. For practical purposes, logistic regression and its modifications often

- represent a good trade-off between cost and accuracy,
- make the contribution of different explanatory variables easy to understand and
- yield results that easy to interpret,

and therefore should be implemented whenever possible.

¹Authors of predictive analytics literature have frequently enjoyed this advantage [8].

The mathematical rationale behind logistic regression is based on map-

ping the probability domain onto the real axis as outlined below:

$$Y|X \sim B(1,p) , \qquad (3.14)$$

$$p(x) = P(Y|X) \tag{3.15}$$

$$logit(p(x)) = \ln \frac{p(x)}{1 - p(x)}, p \in [0; 1].$$
(3.16)

(3.17)

In applying transformation (3.16), one must effectively hold out hope of approximating a discrete-valued function with a smooth sigmoid function defined by (3.16) as illustrated in Fig 3.5.

Logistic regression fit

Figure 3.5: Logistic regression fit: an illustration

The accuracy of approximation (3.18) depends on the separability of two sets, Y = 0 and Y = 1.

Logistic regression model corresponding to (3.16) has the form

$$logit(p(x)) = X\beta, logit(p(x)) \in [-\infty, \infty], \qquad (3.18)$$

©2016 NorthShore University HealthSystem

22

however, coefficients β cannot be found using linear regression techniques described in Section 3.2 since the observed outcome of interest (p = 1)corresponds to positive infinity in the transformed range of (3.18) and the remainder of cases (p = 0) correspond to negative infinity. The solution of (3.18) is found using the *maximum likelihood method* [15]. Observe from (3.16) that

$$p(x) = \frac{1}{1 + e^{-X\beta}} . \tag{3.19}$$

The likelihood of obtaining outcome y_i given the value of the predictor variable x_i is $p(x_i)$

$$P(y_i|x_i) = p(x_i)^{y_i} [1 - p(x_i)]^{1 - y_i} , \qquad (3.20)$$

and the total likelihood of obtaining a specific sequence of outcomes is

$$l(\beta) = \prod_{i=1}^{N} p(x_i)^{y_i} \left[1 - p(x_i)\right]^{1 - y_i} , \qquad (3.21)$$

or, taking the natural logarithm of both sides for convenience,

$$L(\beta) = \ln [l(\beta)] = \sum_{i=1}^{N} \{y_i \ln p(x_i) + (1 - y_i) \ln [1 - p(x_i)]\}, \quad (3.22)$$

The maximum of $L(\beta)$ can be found by differentiating (3.22) with respect to β_i and setting the resulting equations to 0:

$$\frac{\partial L(\beta)}{\partial \beta_i} = \sum_{i=1}^N x_i \left[y_i - p(x_i) \right] = 0.$$
(3.23)

The solution of (3.23) can be found by standard numerical solution techniques, e.g., the Newton-Raphson method [28]. Fortunately, Open Source and commercial statistical software has logistic regression algorithms efficiently implemented, so that implementing the above-mentioned algorithm is not a concern for a typical user.

As an example, consider a classification problem described by Table 3.2.

Predictive variable	Outcome	Predictive variable	Outcome	Predictive variable	Outcome
1	0	8	0	15	1
2	0	9	0	16	1
3	0	10	0	17	1
4	0	11	0	18	0
5	0	12	1	19	1
6	0	13	1	20	1
7	1	14	1		

Table 3.2: Example: Logistic regression

The corresponding R code is presented in Listing 3.3.

```
x <- 1:20
y <- c(rep(0, 6), 1, rep(0, 4), rep(1, 6), 0, 1, 1)
glm <- glm(y ~ x, family=binomial( link='logit'))
summary(glm)
confint(glm)
```

Listing 3.3: Example: R code for logistic regression.

producing the output in Listing 3.4.

```
Call:
\operatorname{glm}(\operatorname{formula} = \operatorname{y} \, \tilde{\,\,} x, \operatorname{family} = \operatorname{binomial}(\operatorname{link} = "\operatorname{logit}")
    )
Deviance Residuals:
     Min
                    1Q
                           Median
                                              3Q
                                                         Max
-2.1815
            -0.5596 -0.2371
                                        0.6403
                                                     1.8960
Coefficients:
                 Estimate Std. Error z value Pr(|z|)
(Intercept) -4.0972
                                    1.7830
                                               -2.298
                                                            0.0216 *
                   0.3544
                                    0.1476
                                                 2.401
                                                            0.0163 *
х
Signif. codes:
                       0' * * *' 0.001' * *' 0.01' * 0.05'.
    0.1 ' ' 1
```

```
(Dispersion parameter for binomial family taken to be
   1)
    Null deviance: 27.526
                                    degrees of freedom
                            on 19
Residual deviance: 16.707
                            on 18
                                    degrees of freedom
AIC: 20.707
Number of Fisher Scoring iterations: 5
Waiting for profiling to be done ...
                  2.5 %
                            97.5 %
(Intercept) -8.6739420
                        -1.2930813
             0.1207693
                         0.7329936
х
```

Listing 3.4: Example: R logistic regression model summary output.

It follows from Listing (3.4) that both the intercept and slope estimates are statistically significantly different from 0 at the 95% level (p < 0.05). The 95% confident interval for the intercept is [-8.67; -1.29], and for the slope it is [0.12; 0.73]. The resulting model has the form¹

$$logit(\hat{p}(x)) = -4.0972 + 0.3544x , \qquad (3.24)$$

and the probability estimate is

$$\hat{p}(x) = \frac{1}{1 + e^{4.0972 - 0.3544x}}$$
 (3.25)

As in Section 3.2, we already presented an illustration of (3.25) in Fig. 3.5.

3.4 Survival modeling

A frequently asked question in healthcare analytics is: "What is the probability of survival for (at least) time t from now ($t_0 = 0$) of an individual with specific conditions?" or, conversely, "What is the expected survival time of a given individual?". Survival analysis is a form of regression that can help answer these questions. A standard procedure for evaluating survival probability, and, to some extent, expected survival time, is *Cox survival analysis* [12], [18], [27]. At the core of it is the semiparametric *Cox proportional hazard model*.

¹As in Section 3.2, the accuracy of coefficient estimates is lower than 0.5×10^{-4}

In the following analysis, we assume that an outcome of interest represents an irreversible state transition (e.g., alive to dead). The probability of an event of interest occurring before time t is

$$P(t) = Pr(T \le t) = \int_0^t p(x)dx$$
, (3.26)

where T is the time of the event and p(x) is the probability density of the (possibly unknown) distribution of such an event. The probability of an individual surviving until (at least) time t is termed the survival function and represents the complement of P(t)

$$S(t) = Pr(T > t) = \int_{t}^{\infty} p(x) dx$$
 (3.27)

The rate of arrival of outcomes of at time t is equal to the instantaneous probability of an event at time t conditional upon surviving until that time and can be calculated as¹

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$
$$= \frac{dP(t)}{dt} \frac{1}{S(t)} = \frac{p(t)}{S(t)} .$$
(3.28)

In the Cox model, hazard rate h(t) is regressed against a set of predictors X_i as

$$h(t) = h_0(t)e^{\sum_{i=1}^N b_i x_i}, \qquad (3.29)$$

where b_i is the weighting of x_i , the *i*-th of N explanatory variables. For the population of M individuals, (3.29) can be rewritten as

$$h_i(t) = h_{i_0}(t)e^{\sum_{j=1}^N b_j x_{ij}}, i = \overline{1:N}, j = \overline{1:M}.$$
 (3.30)

Taking the (natural) logarithm of both sides of (3.30), we arrive at the equivalent of (3.18):

$$\ln \frac{h_i(t)}{h_{i_0}(t)} = \sum_{j=1}^N b_j x_{ij} , i = \overline{1:N}, j = \overline{1:M} .$$
 (3.31)

The form of $h_{i_0}(t)$ is not formally specified; its shape is determined by empirical data in the training dataset giving rise to the unparametric portion

 $^{^{1}}$ conditional probability

of the model.¹ The solution of (3.26) is delivered by the maximum of the *partial likelihood function* defined in [5] as

$$L_p = \prod_{i=1}^{N} \left[\frac{e^{x_i \beta}}{\sum_{j=1} N Y_{ij} e^{x_i \beta}} \right]^{\delta_i} , \qquad (3.32)$$

$$Y_{ij} = \begin{cases} 0, \text{if } t_j < t_i ,\\ 1, \text{otherwise} . \end{cases},$$
(3.33)

$$\delta_i = \begin{cases} 0, \text{ if event did not occur at time} t_i , \\ 1, \text{ otherwise }. \end{cases}$$
(3.34)

A widely accepted standard for survival analysis in R is the survival package [7]; a noteworthy extension of it that takes into account relative survival probability is relsurv [26].

Two important variables to consider in survival analysis are time since first diagnosis and age. The former reflects the individual's "lifetime" measured with respect to others with the same group of conditions, the latter relates his or her expected risk of experiencing a negative outcome to that of the general population.

It is important to distinguish survival analysis, which is characterized by an impenetrable boundary between the sets with null and eventful outcomes, from renewal analysis where such boundary can be crossed. Clearly, the transition from alive to deceased can occur only once whereas the transition between healthy and ill can occur multiple times. Renewal analysis is governed by a similar set of equations but is conceptually different from survival analysis.

An illustrative performance comparison between a regular logistic regression model and Cox proportional hazard model used for predicting one-year mortality among heart failure patients is presented in Fig. 3.6

¹Hence the term "semiparametric".

(b) Performance of a Cox proportional hazard model.

Figure 3.6: Example: Comparison of logistic regression and Cox proportional hazard model performance for predicting one-year mortality among heart failure patients.

As can be seen from Fig. 3.6, the AUC for model in question is approximately 0.81. The attained maxima are approximately 0.45 for F_1 score and 0.4 for Matthews' correlation coefficient, however, those maxima are attained at approximately 45% of the total population for the logistic regression model and 5% for the Cox proportional hazard model. This leads us to believe that, in this particular case, the latter achieves optimal accuracy for smaller population samples than the former, however, overall model accuracies is virtually identical.

The R code for performing predictive modeling in the example above can be found in Appendix D.

3.5 Data scrubbing

Variable	Example	Method	Comment
type		of impu-	
		tation	
Indicator	cancer	negative	no outcome of interest is
variable	indicator	indicator	assumed if no indicator data is
		(0)	present, e.g., if no cancer
			indicator is set, the patient is
			assumed to be cancer-free
Categorical	ethnicity	other	the missing descriptor is set to
variable			an "all-catching" category
Interval	binned	mode	assume the most frequent
variable	level of		occurrence for all missing data
	income		
Ordinal	education	median	median works well for skewed
variable	level		(integer-valued) distributions
Continuous	systolic	mean	we generally prefer an unbiased
variable	blood		estimate
	pressure		
Date	first	latest	e.g., last visit or pacemaker
	diagnosis	date indi-	installation date or last
	date	cating	cardiologist contact date
		contact	

Several methods are available for the *imputation* of missing values [25]. A summary of currently used methods is presented in Table 3.3. For example,

Table 3.3: Missing data imputation methods

in the Heart Failure End-of-life project, the following fallback sequence was

used to backfill missing first diagnosis dates:

- i most recent Pacemaker Date,
- ii first AICD date,
- iii most recent ejection fraction measurement date,
- iv most recent cardiologist visit date,
- v most recent contact date.

3.6 Outliers

Outliers in the input data can be detected by examining the distribution of each independent variable. The following algorithm is suggested for detecting and eliminating outliers:

- I sort the values of a predictor variable in the ascending or descending order, depending on the nature of the variable;
- II eliminate obvious outliers, e.g., negative costs or 1000 mmHg blood pressure, by setting them to a predetermined fixed value (e.g., 0) or a specified aggregate statistic of the distribution (e.g., median value);
- III plot the histogram of the distribution and visually inspect it;
- IV if the parametric form of the distribution is known or can be inferred from theoretical or practical considerations, attempt to fit the distribution to its hypothesized shape and purge the "tails" (can be done for either normal or non-normal cases).
- V truncate the distribution if necessary (this should be considered the last resort);

3.7 Predictive variable selection

One of the most essential steps in developing a robust and accurate predictive model is variable selection. It is not uncommon to start this process with a candidate list of several hundred candidate predictors, eventually whitling it down to 10-20. While some sources advocate automated variable selection using, e.g., their significance levels, others point out that "...a purely statistical solution is unrealistic. The role of scientific judgment cannot be overlooked." [2]; see also [1]. Considering that it may be difficult to

implement a manual solution when working with a particularly large number of variables, an automated process, e.g., backward selection, may be used to augment but not supplant the researcher's judgment; a standard R package, caret, is widely accepted for this purpose [16]. An algorithm for this process is outlined in Fig 3.7.

3.7.1 Removing highly correlated variables

Model coefficients β for linear (3.10) and logistic regressions (3.18) are computed numerically and are thus susceptible to stability problems if the *condition number* of the corresponding linear system is large [14], [33]. The condition number of a matrix is computed as

$$\kappa(X) = \|X\| \|X^{-1}\| \tag{3.35}$$

for a non-singular (square) matrix and as^1

$$\kappa(X) = ||X|| ||X^{\dagger}||,$$
(3.36)

$$X^{\dagger} = \begin{cases} (A^T A)^{-1} A^T, & \text{if } |A^T A| \neq 0, \\ A^T (A A^T)^{-1}, & \text{if } |A A^T| \neq 0. \end{cases}$$
(3.37)

We can see from (3.35) that a numerically singular matrix for which $|A^T A| \approx 0$ would lead to a numerically unstable set of coefficients β with respect to a small perturbation of X:

$$\frac{\|\Delta\beta\|}{\|\beta + \Delta\beta\|} = \kappa(X) \frac{\|X\|}{\|X + \Delta X\|}, \qquad (3.38)$$

In view of this, it is advisable to pare down highly correlated vectors as illustrated by the example below.

In the course of assessing the probability of hospitalization for chronic obstructive pulmonary disorder (COPD) patients, practitioners suggested an initial set of variables presented in Table 3.4 as candidates for inclusion in the predictive linear regression model².

¹In application to (3.10) and (3.18), we are only concerned with the top line of (3.37). ²The full nomenclature of input variables including their type and meaning can be found in Table 5.1

Start

Figure 3.7: An algorithm for selecting predictive variables. ©2016 NorthShore University HealthSystem

 Table 3.4:
 Example:
 Variable selection for COPD logistic regression model

Predictive variable
CARDO_24MM_VISIT
DAYS_SINCE_LAST_EF
DISCHARGED_DISP_30_DAYS
DISCHARGED_DISP_31_365_DAYS
DISCHARGED_DISP_365_DAYS
EJFR_NUM
HOSP_12M_VISIT
HOSP_30D_VISIT
NOT_PRN_MED_TOTAL_PRESCRIBED
NUM_ER_VISITS_30_DAYS_COPD
NUM_ER_VISITS_30_DAYS_PNEU
NUM_ER_VISITS_31_365_DAYS_COPD
NUM_ER_VISITS_31_365_DAYS_PNEU
NUM_ER_VISITS_365_DAYS_COPD
NUM_ER_VISITS_365_DAYS_PNEU
NUM_HF_HOSP_365_31_DAYS_COUNT
NUM_HOSP_30_DAYS_COPD
NUM_HOSP_30_DAYS_PNEU
NUM_HOSP_31_365_DAYS_COPD
NUM_HOSP_31_365_DAYS_PNEU
NUM_HOSP_365_DAYS_COPD
NUM_HOSP_365_DAYS_PNEU
NUM_MISSED_APPTS_365
NUM_UNIQUE_SPECIALTIES
PAT_AGE_YRS
PULMO_24MM_VISIT
TOTAL_LOS_HOSP_DAYS_LST_12_MO
TOTAL_MEDS_PRESCRIBED
ACE_INHIBITOR_PRESCRIBED
ANTICOAG_PRESCRIBED
ARB_PRESCRIBED
ASPIRIN_PLAVIX_PRESCRIBED
ASPIRIN_PRESCRIBED
BETA_BLOCKER_PRESCRIBED
CAD_IND
Continued on next page

Table 3.4 – Continued from previous page

Predictive variable CALCCHANBLOCKER_PRESCRIBED CANCER_IND COMBOANTHYP_PRESCRIBED DEM_IND DIAB_IND DIGOXIN_PRESCRIBED EJFR_IND ER_VISITS_365_DAYS_COPD_IND FEMALE_IND HF_IND HOSP_365_DAYS_COPD_IND HTN_IND INSULIN_PRESCRIBED INTUB_GT_OR_E_2DAYS_LST_2YRS LOOPDIURETIC_PRESCRIBED LOS_GTE_10_DAYS_HOSP METOLAZONE_PRESCRIBED MG_PCP_18M_SEEN_IND MG_PCP_24M_SEEN_IND MILDOBDOP_PRESCRIBED MI_IND NONINSULIN_DIAB_PRESCRIBED O2_IND ORALNITRATE_PRESCRIBED ORALVASODILSPERF_PRESCRIBED PLAVIX_PRESCRIBED PL_ADHD_IND PL_BIPOLAR_IND PL_CKD_IND PL_DEPR_IND PL_HEPCIRR_IND PL_HIV_IND PL_PD_IND PL_PM_IND PL_PSYCH_IND PL_SCIATICA_IND

Continued on next page

Table 3.4 – Continued from previous page

Predictive variable
PL_SICKLE_IND
SMOKER_IND
SPIRON_PRESCRIBED
STATIN_PRESCRIBED
THIAZIDEDIUR_PRESCRIBED

Available data included patient admission data for years 2010 to 2013¹. The model was trained on a random subsample consisting of 80% of patient admissions from 2010 to 2013 and tested on the remaining 20% of the data. Correlation matrices for binary and continuous/interval variables are presented in Fig. 3.8 and 3.9. Specifically, highly correlated variables in binary and continuous/interval subspaces are listed in Tables 3.5 and 3.6. We se-

Predictive variable 1	Predictive variable 2	Corre-
		lation
HF_IND	LOOPDIURETIC_PRESCRIBED	0.6783
MG_PCP_18M_SEEN_IND	MG_PCP_24M_SEEN_IND	0.8274

Table 3.5: COPD model: Highly correlated binary variables

lect HF_IND as the more reliable and transparent of the two indicators and MG_PCP_24M_SEEN_IND as the standard medical group indicator from Table 3.5². Selecting variables from Table 3.6 is based on common sense business considerations and results in the following set: TOTAL_MEDS_PRESCRIBED, EJFR_NUM, NUM_HOSP_365_DAYS_COPD, NUM_ER_VISITS_365_DAYS_COPD, NUM_HOSP_365_DAYS_PNEU and NUM_ER_VISITS_365_DAYS_PNEU. Upon comparing the resulting variable sets with the initial candidate pool in Table 3.4, we can eliminate EJFR_NUM, NUM_HOSP_365_DAYS_COPD in favor of indicators EJFR_IND, HOSP_365_DAYS_COPD_IND and ER_VISITS_365_DAYS_COPD in favor of indicators EJFR_IND, HOSP_365_DAYS_COPD_IND and ER_VISITS_365_DAYS_COPD_IND respectively. Further analysis shows no highly correlated variables on the combined set as shown in Fig. 3.10³. Graphs in Fig.

¹The original input data contains over 27,000 rows and is too voluminous to present in this document.

 $^{^{2}}$ We use this indicator frequently in our reports, as it is our locally accepted definition of a "medical froup primary care patient".

³Technically, Pearson correlation between numeric and indicator variables is not very informative but we present it here anyway for illustration purposes.

Indicator correlation matrix

Figure 3.8: COPD Example: correlation matrix of binary, interval and continuous predictive variables

3.8 - 3.10 were generated in R using the following command:

```
library(lattice)
levelplot(cor(dataSet), scales=list(x=list(rot
=90), cex=0.5))
```

Listing 3.5: Example: R code for plotting a covariance matrix.
Numerical factor correlation matrix

Figure 3.9: COPD Example: correlation matrix of continuous/interval predictive variables

where dataSet is the dataframe containing original input data.

3.7.2 Computing a univariate odds ratio

Consider a 2×2 contingency table relating predicted and actual outcomes of interest as displayed in Table 3.7. An *odds ratio* is the ratio of odds of a patient having a binary outcome of interest (1) conditional upon having the

Predictive variable 1	Predictive variable 2	Corre-
		lation
TOTAL_MEDS	NOT_PRN_MED_TOTAL	0.9924
PRESCRIBED	PRESCRIBED	
EJFR_NUM	DAYS_SINCE_LAST_EF	0.6989
DISCHARGED_DISP_365	DISCHARGED_DISP_31_365_DAYS	0.9575
DAYS		
NUM_HOSP_31_365_DAYS	NUM_HOSP_365_DAYS_COPD	0.9605
COPD		
NUM_ER_VISITS_31_365	NUM_ER_VISITS_365_DAYS_COPD	0.9656
DAYS_COPD		0.0040
NUM_HOSP_31_365_DAYS	NUM_HOSP_365_DAYS_PNEU	0.9643
PNEU		0.0100
NUM_ER_VISITS_31_365	NUM_ER_VISITS_365_DAYS_PNEU	0.9128
DAYS_PNEU		0.0010
HOSP_12M_V1511	TOTAL_LOS_HOSP_DAYS_LST_12	0.8319
NUM HOCD 21 265 DAVC	MO	0 6179
NUM_HOSP_31_305_DAYS	TOTAL_LOS_HOSP_DAYS_LST_12	0.0173
PNEU NUM HOSD 265 DAVS	MO TOTAL LOS HOSD DAVS LST 19	0 6990
DNDU	101AL_LOS_HOSP_DAYS_LS1_12	0.0000
L PNEU	MO	

Table 3.6: COPD model: Highly correlated continuous/interval variables

Dradictiva variabla	Outo	Total	
r redictive variable	1	0	Total
1	n_{11}	n_{10}	n_{1*}
0	$ n_{01} $	n_{00}	n_{2*}
Total	n_{*1}	n_{*2}	N

Table 3.7: Predictive variable and outcome of interest

property described by the predictive variable to the odds of the patient not having an outcome of interest (0) conditional upon not having that property:

$$OR_{uni}^{(ind)} = \frac{\frac{n_{11}}{n_{10}}}{\frac{n_{01}}{n_{00}}} = \frac{n_{11}n_{00}}{n_{10}n_{01}}$$
(3.39)

Statistically, an odds ratio describes how much more likely the patient is to have an outcome of interest if he possesses a property thought to be predictive of the outcome compared to not having that property. If the

Factor correlation matrix

Figure 3.10: COPD Example: correlation matrix of binary predictive variables

odds ratio or its inverse are different from 1, then there is a chance that the candidate predictive variable indeed possesses predictive power. This hypothesis can be statistically justified if the confidence interval for the odds ratio does not include 1 at the significance level α .

An example of a contingency matrix for hospital admissions of heart failure patients contingent upon them having had an ejection fraction test

previously ordered is presented in Table 3.8. Here the corresponding ratio

Ejection fraction	Hospita followin	Total	
	yes	no	
yes	5	90	95
no	20	1000	1020
TOTAL	25	1090	1115

Table 3.8: Example: Predictive variable and outcome of interest

is

$$OR_{uni}^{(ind)} = \frac{\frac{5}{90}}{\frac{20}{1000}} = \frac{1}{18 \times 0.02} = 2.78$$

signifying a potentially high predictive value of ejection fraction having been ordered in the past when forecasting future hospitalizations within the following year.

If the predictor variable under consideration is categorical with more than two levels rather than indicator type, a 2×2 contingency table cannot be constructed and (3.39) does not apply. In this case, either of the following modification of the algorithm for calculating the odds ratio can be employed to calculate a suitable proxy:

I One-vs.-the-rest:

- (a) compute the proportion of the total population that belongs to each category;
- (b) roll up categories containing the percentage of the population that is smaller than a predetermined lower boundary (e.g., 5%);
- (c) calculate the number of positive and negative outcomes of interest for the remainder of the population excluding each (rolled-up) category in turn;
- (d) construct the 2×2 contingency table as before and compute the "one-vs.the-rest" odds ratio for each category following the algorithm for indicator variables described above.

II Benchmark:

(a) roll up sparsely populated categories as described above;

- (b) select a "benchmark" category that makes business sense (e.g., "married" if examining marital status); in many instances, it makes sense to choose the most populous category as the benchmark;
- (c) for each category, construct the 2×2 contingency table against the benchmark and compute the "benchmark" odds ratio as you would for an indicator variable.

An example of the *one-vs.-the-rest* algorithm is given by blood utilization data presented in Table 3.9. Since there are no sparse categories, i.e., the

Pavilion	# of	patients	Total	% of Crand Total	
	transfused	not transfused	TOTAL		
A	800	24,200	$25,\!000$	40.32	
В	800	12,200	$13,\!000$	20.97	
C	700	$13,\!300$	$14,\!000$	22.58	
D	700	9,300	10,000	16.13	
TOTAL	3,000	59,000	62,000	100.00	

Table 3.9: Example: Blood utilization data for building *one-vs.the-rest* contingency table¹

ones containing less than 5% of the total population, we can separate each hospital (pavilion) in turn from the rest and generate 2×2 contingency tables as shown in Table 3.10. Judging by the odds ratios presented in Table 3.10,

Davilion	# of	patients	Odda	Odds	CI	CI
1 aviiioii	transfused	not transfused	Jouus	ratio	lower	upper
А	800	24,200	0.033	0.52	0.48	0.57
Other	2,200	$34,\!800$	0.063	0.52	0.40	0.57
В	800	12,200	0.066	1 20	1 99	1 59
Other	2,200	$46,\!800$	0.047	1.39	1.20	1.52
С	700	13,300	0.053	1.05	0.06	1 1 4
Other	2,300	45,700	0.050	1.05	0.90	1.14
D	700	9,300	0.075	1 69	1 40	1 78
Other	2,300	49,700	0.046	1.02	1.49	1.70

Table 3.10: Example: One-vs.the-rest contingency tables by hospital.

 $^{^1\}mathrm{The}$ total adds up to 100% within the roundoff error.

	Hosp	italized in the		
Marital status	follov	ving 365 days?	Total	% of Grand Total
	yes	no		
Divorced	58	2,220	2,278	8.33
Engaged	0	8	8	0.03
Legally Separated	1	39	40	0.15
Life Partner	2	34	36	0.13
Married	305	12,160	12,465	45.61
Separated (Not Legally)	1	96	97	0.35
Single	112	$3,\!671$	3783	13.84
Unknown	2	352	354	1.30
Widowed	251	8,020	8,271	30.26
TOTAL	732	26,600	27,332	100.00

Table 3.11: Example: Predictive variable and outcome of interest

Pavilion C is the only hospital whose identity appears to have no discernible "predictive" influence on the number of blood transfusions compared to the rest of the pavilions.

As an example of the *benchmark* algorithm, consider admission data presented in Table 3.11. We now roll up sparse categories, e.g., the ones containing less than 5% of the total population, by merging "Engaged", "Legally Separated", "Life Partner" and "Separated (Not Legally)" into category "Other" as shown in Table 3.12. The most populous category, "Married", is a natural benchmark selection against which the odds ratios and their statistics can be computed. An example for category "Divorced" in shown in Table 3.13. Here the odds ratio is

$$OR = \frac{\frac{58}{2,220}}{\frac{305}{12,160}} = \frac{0.0261}{0.0251} = 1.04 \; ,$$

for the remaining categories as shown in Table 3.14 A straightforward argument based on the data in Table 3.14 would favor "Widowed" as a predictor of hospitalizations since its odds ratio is statistically significantly different from 1 at the 99% level (p = 0.01) and its confidence interval (CI) does not include 1 at the 95% significance level (p = 0.05).

If the predictor variable is continuous rather than categorical, it could conceivably be transformed into the categorical form by "binning" its values into intervals, however, this approach is generally not recommended.

	Hospi	talized in the		
Marital status	follow	ing 365 days?	Total	% of Grand Total
	yes	no		
Divorced	58	2,220	2,278	8.33
Married	305	12,160	12,465	45.61
Single	112	$3,\!671$	3783	13.84
Other	6	529	535	1.96
Widowed	251	8,020	8,271	30.26
TOTAL	732	26,600	27,332	100.00

Table 3.12: Example: Predictive variable and outcome of interest,rolled-up "Marital Status"

Marital status	Hospi follow	Total	
	yes	no	
Divorced	58	2,220	$2,\!278$
Married	305	12,160	$12,\!465$
TOTAL	363	14,380	14,743

Table 3.13: Example: Odds ratio for "Divorced" vs. "Married".

Marital status	Odds Ratio	CI Lower	CI Upper	p-value
Divorced	1.04	0.78	1.38	0.779
Single	1.21	0.98	1.52	0.081
Other	0.45	0.20	1.02	0.056
Widowed	1.25	1.05	1.48	0.010

Table 3.14: Example: *Benchmark* odds ratios and their statistics.

Instead, an "incremental" odds ratio is computed as follows:

1. construct a univariate logistic regression model for the variable in question as

$$\ln\left(\frac{p(x)}{1-p(x)}\right) = b_0 + ax , \qquad (3.40)$$

where b_0 is the intercept of the logistic equation, a is the slope of the (univariate logistic regression) line;

2. observe that

$$\ln\left(\frac{p(x+1)}{1-p(x+1)}\right) = b_0 + a(x+1) , \qquad (3.41)$$

and hence

$$\ln\left(\frac{p(x+1)}{1-p(x+1)}\right) - \ln\left(\frac{p(x)}{1-p(x)}\right) = \\ \ln\left(\frac{p(x+1)[1-p(x)]}{p(x)[1-p(x+1)]}\right) = a = \ln\left(OR_{uni}^{cont}\right) .$$
(3.42)

Exponentiating both sides, we obtain

$$OR_{uni}^{cont} = e^a . aga{3.43}$$

The odds ratio defined by (3.43) can be viewed as a proportional increase in the odds of encountering an outcome of interest corresponding to a unitary increase in the value of the (continuous) predictive variable of interest. Note here that (3.43) makes sense only if the predictive variable can indeed vary by 1, if not, it needs to be reformulated with respect to the permissible increment δ [15]:

$$\ln\left(\frac{p(x+\delta)}{1-p(x+\delta)}\right) - \ln\left(\frac{p(x)}{1-p(x)}\right) = \\ \ln\left(\frac{p(x+\delta)[1-p(x)]}{p(x)[1-p(x+\delta)]}\right) = \delta a , \qquad (3.44)$$

$$\ln\left(OR(\delta)_{uni}^{cont}\right) = \delta a , \qquad (3.45)$$

$$OR(\delta)_{uni}^{cont} = e^{\delta a} . aga{3.46}$$

An instructive example of the foregoing is the "incremental" odds ratio with respect to patient age as described in Table 3.15. We construct a univariate

	Hos	pital-									
	ized	in the									
	follo	wing		folle	wing		folle	owing		folle	owing
Ago	365	days?	Ago	365	days?	Ago	365	days?		365	days?
лде	yes	no	Age	yes	no	Age	yes	no]	yes	no
0	0	0	27	0	8	54	4	175	81	28	889
1	0	0	28	0	7	55	5	202	82	39	927
2	0	0	29	0	10	56	5	233	83	39	969
3	0	0	30	0	16	57	9	247	84	26	984
4	0	0	31	0	16	58	9	257	85	38	916
5	0	0	32	0	17	59	5	284	86	27	908
6	0	7	33	0	11	60	10	302	87	25	830
7	0	11	34	0	8	61	10	321	88	24	779
8	0	10	35	0	8	62	5	347	89	19	749
9	0	12	36	0	9	63	9	413	90	17	642
10	0	13	37	0	15	64	3	429	91	17	586
11	0	11	38	0	17	65	14	442	92	15	544
12	0	12	39	0	25	66	12	493	93	6	438
13	0	10	40	0	31	67	10	470	94	3	389
14	0	7	41	0	30	68	10	541	95	3	332
15	0	6	42	0	32	69	14	561	96	4	258
16	0	6	43	0	33	70	17	606	97	3	224
17	0	8	44	0	41	71	21	596	98	2	183
18	0	13	45	0	46	72	18	592	99	2	133
19	0	14	46	0	47	73	21	596	100	0	97
20	0	12	47	0	71	74	26	636	101	0	64
21	0	13	48	0	77	75	21	679	102	0	40
22	0	11	49	0	98	76	20	700	103	0	38
23	0	11	50	4	120	77	23	737	104	0	30
24	0	11	51	3	121	78	24	747	105	0	18
25	0	8	52	5	143	79	25	820	106	0	9
26	0	7	53	3	165	80	31	838			

Table 3.15:Example: Patient outcome by age.

O2016NorthShore University HealthSystem

logistic regression model from the data in Table 3.15 using (3.40 - 3.43).

$$\ln\left(\frac{p(x)}{1-p(x)}\right) = -19.58 + 0.0247x , \qquad (3.47)$$

and, therefore,

$$OR_{uni}^{cont} = e^0.0247 = 1.025 . (3.48)$$

The odds ratio in (3.48) does not reveal much of a pattern of dependency of the probability of hospitalization on the patient's age. Alternatively, considering an increment of 10 years instead, we obtain:

$$OR(10)_{uni}^{cont} = e^{0.247} = 1.28$$
, (3.49)

and thus the odds ratio over a 10-year interval appears¹ to have more potential predictive power than its conventional counterpart defined by (3.48). Regardless of the size of the increment δ , the graph of logit(p(x)) in Fig. 3.11 leads one to be skeptical about the influence of age as a continuous variable on the likelihood of hospitalization. Its inclusion in the final set of variables needs to be justified by examining overall model performance as described in section 3.10.2. The R code used for generating Fig. 3.11 is presented in Listing 3.6.

In the example in Section 3.7.1, the odds ratio matrix computed for binary variables is presented in Table 3.16^2

Table 3.16:	Example:	Univariate	odds ratio	o statistics	for	COPD	logistic
regression m	nodel - bina	ary and ind	icator vari	ables.			

			Confid	lence	Va-
Variable	Odds	Pr(z	inter	rval	li-
variable	Ratio	> Z)	Lower	Upper	di-
			boun-	boun-	ty
			dary	dary	
ACE_INHIBITOR	1.8738	0.0000	1.5894	2.2090	*
PRESCRIBED					
			Continued	l on next	page

¹Here we are not considering the confidence interval of $OR(10)_{uni}^{cont}$

²Table 3.16 was generated by calling odds.ratio.save from package NS.CA.modelUtils, see Appendix E.4; function signature can be found, e.g., in Listing D in Appendix D.

				1	t ~ J ~
			Confi	dence	Va-
Variable	Odds	Pr(z)	inte	erval	li-
Variabie	Ratio	> Z)	Lower	Upper	di-
			boun-	boun-	ty
			dary	dary	
ANTICOAG	2.1877	0.0000	1.8446	2.5946	*
PRESCRIBED	2 0724	0,0000	1 7051	2 5187	*
ASPIRIN PLAVIX -	1 6/95	0.0000	0.5179	5.2541	
PRESCRIBED	1.0450	0.0012	0.0115	0.2041	
ASPIRIN_PRESCRIBED	1.6309	0.0000	1.3749	1.9347	*
BETA_BLOCKER	1.6672	0.0000	1.4203	1.9569	*
PRESCRIBED					
CAD_IND	0.8656	0.1490	0.7115	1.0530	
CALCCHANBLOCKER	2.3203	0.0000	1.9747	2.7262	*
PRESCRIBED CANCER IND	1 7982	0.0115	1 1405	28350	*
COMBOANTHYP -	1.3457	0.0254	1.0372	1.7461	*
PRESCRIBED		0.0201			
DEM_IND	0.8037	0.5692	0.3786	1.7059	
DIAB_IND	0.9554	0.6724	0.7734	1.1803	
DIGOXIN_PRESCRIBED	1.4132	0.0159	1.0670	1.8716	*
EJFR_IND	3.8428	0.0000	3.2834	4.4974	*
ER_VISITS_365_DAYS	10.4165	0.0000	7.3204	14.8222	*
COPD_IND	1 0 - 0 4	0.0500	0.0000	1.0504	
FEMALE_IND	1.0764	0.3582	0.9200	1.2594	
HF_IND	0.9542	0.6393	0.7842	1.1610	*
HOSP_365_DAYS_COPD	12.4944	0.0000	10.4371	14.9571	*
IND HTN_IND	0.9466	0.4894	0.8100	1.1061	
INSULIN_PRESCRIBED	1.6748	0.0001	1.2896	2.1749	*
INTUB_GT_OR_E	1.8815	0.1693	0.7639	4.6339	
2DAYS_LST_2YRS					
LOOPDIURETIC	1.4818	0.0005	1.1877	1.8489	*
PRESCRIBED LOS_GTE_10_DAYS	3.2674	0.0000	2.6066	4.0957	*
HOSP METOLAZONE	1.5546	0.0784	0.9512	2.5408	
PRESCRIBED MG_PCP_18M_SEEN_IND	2.1249	0.0000	1.8176	2.4841	*
	•				•

Table 3.16 – Continued from previous page

Continued on next page

O2016NorthShore University HealthSystem

			Confi	dence	Va-
Variable	Odds	Pr(z	inte	rval	li-
variable	Ratio	> Z)	Lower	Upper	di-
			boun-	boun-	ty
			dary	dary	
MI_IND	0.8766	0.5153	0.5895	1.3036	
MILDOBDOP	2.2253	0.5827	0.1283	38.5944	
PRESCRIBED					. du
NONINSULIN_DIAB	1.3872	0.0042	1.1087	1.7357	*
PRESCRIBED O2 IND	4 7088	0.0000	3 7370	6 1600	*
OBALNITRATE -	1 3678	0.0000 0.0276	1 0352	1.8071	*
PRESCRIBED	1.5010	0.0210	1.0552	1.0071	
ORALVASODILSPERF	3.0655	0.0000	2.1321	4.4075	*
PRESCRIBED					
PL_ADHD_IND	2.5317	0.1201	0.7847	8.1676	
PL_BIPOLAR_IND	0.5756	0.2744	0.2138	1.5498	
PL_CKD_IND	1.4633	0.0272	1.0438	2.0514	*
PL_DEPR_IND	0.9884	0.9268	0.7713	1.2667	
PL_HEPCIRR_IND	0.6641	0.2857	0.3133	1.4079	
PL_HIV_IND	2.9190	0.1449	0.6914	12.3239	
PL_PD_IND	0.5583	0.2487	0.2074	1.5030	
PL_PM_IND	1.5748	0.0039	1.1565	2.1443	*
PL_PSYCH_IND	1.5381	0.2667	0.7196	3.2877	
PL_SCIATICA_IND	1.2370	0.0267	1.0249	1.4931	*
PL_SICKLE_IND	9.4805	0.0444	1.0582	84.9378	*
PLAVIX_PRESCRIBED	1.8720	0.0000	1.4833	2.3630	*
SMOKER_IND	3.2665	0.0000	2.4959	4.2749	*
SPIRON_PRESCRIBED	1.9064	0.0000	1.4722	2.4685	*
STATIN_PRESCRIBED	1.5582	0.0000	1.3314	1.8237	*
THIAZIDEDIUR	1.7971	0.0000	1.4951	2.1602	*
PRESCRIBED					
African American :	0.5408	0.0000	0.4098	0.7135	*
Caucasian	0.0025	0 0022	0 4909	9 0194	
Asian : Caucasian	0.9920	0.9000	0.4692 1 1001	2.0104	*
Diverged - Married	1.4040	0.0071	1.1091	1.9000	
Single Married	1.0028 1.9016	0.0914	0.7000	1.4000 1 5177	
Unimourn Married	0.4967	0.1233	0.9913	1.0111	
Unknown : Married	0.4307	0.0079	0.1795	1.0027	

Table 3.16 – Continued from previous page

Continued on next page

O2016NorthShore University HealthSystem

			-		-
			Confi	dence	Va-
Variable	Odds	Pr(z	inte	rval	li-
Variable	Ratio	>Z)	Lower	Upper	di-
			boun-	boun-	ty
			dary	dary	
Widowed : Married	1.2698	0.0087	1.0623	1.5178	*

Table 3.16 – Continued from previous page

As can be seen from Table 3.16, the most significant predictive variables with respect to their odd ratios are HOSP_365_DAYS_COPD_IND, ER_VIS-ITS_365_DAYS_COPD_IND, PL_SICKLE_IND and O2_IND. The confidence interval for the odds ratio of hospitalization as a function of sickle cell anemia is very wide alerting us to the possible unreliability of this variable as a predictor. Additional data (not presented here for the sake of brevity) shows that the number of patients with sickle cell anemia is too small to derive meaningful conclusions, and therefore, this variable can be dropped from consideration.

The odds ratio matrix computed for continuous / interval variables is presented in Table 3.17^1

Table 3.17: Example: Univariate odds ratio statistics for COPD logistic regression model - interval and continuous variables.

			Confi	dence	Va-
Variable	Odds	Pr(z	inte	rval	li-
variable	Ratio	> Z)	Lower	Upper	di-
			boun-	boun-	ty
			dary	dary	
CARDO_24MM_VISIT	1.1441	0.0000	1.1028	1.1869	*
DAYS_SINCE_LAST_EF	1.0009	0.0000	1.0007	1.0011	*
DISCHARGED_DISP_30	5.5997	0.0000	3.9663	7.9056	*
DAYS DISCHARGED_DISP_31	4.2532	0.0000	3.5935	5.0340	*
365_DAYS DISCHARGED_DISP	4.3690	0.0000	3.7120	5.1422	*
365_DAYS					

Continued on next page

¹Table 3.17 was generated by calling run.glm.model from package textttNS.CA.modelUtils, see Appendix E.4; function signature can be found, e.g., in Listing D in Appendix D.

			Confi	dence	Va-
Variable	Odds	Pr(z	inte	rval	li-
variable	Ratio	> Z)	Lower	Upper	di-
			boun-	boun-	ty
			dary	dary	
$\mathrm{EJFR}_{-}\mathrm{NUM}$	1.0234	0.0000	1.0211	1.0257	*
$HOSP_{12}M_{VISIT}$	1.5409	0.0000	1.4907	1.5929	*
HOSP_30D_VISIT	3.8266	0.0000	3.2682	4.4804	*
NOT_PRN_MED	1.1319	0.0000	1.1107	1.1535	*
TOTAL_PRESCRIBED NUM_ER_VISITS_30	12.0603	0.0000	5.5671	26.1269	*
DAYS_COPD NUM_ER_VISITS_30	15.1914	0.0012	3.8305	60.2473	*
DAYS_PNEU NUM_ER_VISITS_31_365	3.7188	0.0000	2.7820	4.9710	*
DAYS_COPD NUM_ER_VISITS_31_365	4.2475	0.0032	1.8979	9.5060	*
DAYS_PNEU NUM_ER_VISITS_365	3.9804	0.0000	3.0254	5.2368	*
DAYS_COPD NUM_ER_VISITS_365	5.4457	0.0000	2.7264	10.8770	*
DAYS_PNEU NUM_HF_HOSP_365_31	1.8967	0.0000	1.6273	2.2108	*
DAYS_COUNT NUM_HOSP_30_DAYS	16.0163	0.0000	11.7692	21.7960	*
COPD NUM_HOSP_30_DAYS	5.9912	0.0000	4.3968	8.1638	*
PNEU NUM_HOSP_31_365	4.1532	0.0000	3.6970	4.6656	*
DAYS_COPD NUM_HOSP_31_365	2.5963	0.0000	2.3653	2.8498	*
DAYS_PNEU NUM_HOSP_365_DAYS	4.3934	0.0000	3.9402	4.8987	*
NUM_HOSP_365_DAYS	2.5560	0.0000	2.3428	2.7886	*
NUM_MISSED_APPTS	1.0664	0.0000	1.0562	1.0766	*
365 NUM_UNIQUE	1.3969	0.0000	1.3541	1.4411	*
SPECIALTIES PAT_AGE_YRS	1.0031	0.3006	0.9982	1.0079	
PULMO_24MM_VISIT	1.3583	0.0000	1.3182	1.3997	*
			-	-	

Table 3.17 – Continued from previous page

Continued on next page

O2016NorthShore University HealthSystem

			Confi	Va-	
Variable	Odds	Pr(z	inte	rval	li-
variable	Ratio	>Z)	Lower	Upper	di-
			boun-	boun-	ty
			dary	dary	
TOTAL_LOS_HOSP	1.0595	0.0000	1.0537	1.0653	*
DAYS_LST_12_MO TOTAL_MEDS PRESCRIBED	1.1203	0.0000	1.1020	1.1388	*

Table 3.17 – Continued from previous page

As can be seen from Table 3.17, the most significant predictive variables with respect to their odd ratios are NUM_HOSP_30_DAYS_COPD, NUM_-ER_VISITS_30_DAYS_PNEU, and NUM_ER_VISITS_30_DAYS_COPD. We can also observe that PAT_AGE_YRS appears to be insignificant from the point of view of the corresponding odds ratio. In spite of this, we need to bear in mind that, as pointed out in Section 3.7.2, a one year increase in patient age does not change the odds of hospitalization significantly and thus patient's age cannot be automatically discarded from the final model.

3.7.3 Computing a multivariate odds ratio

The odds ratio defined in Section 3.7.2 loses its meaning for a multivariate model regardless of whether the predictive variables are of indicator, categorical or continuous type. Fortunately, (3.42) can be generalized to the case of a multivariate model once we realize that all terms in a multivariate logistic equation except *a* vanish the same way as they did in (3.42) once we construct the "incremental" odds ratio. In view of this, our algorithm will proceed as follows:

1. construct a multivariate logistic regression model for the variable in question as

$$\ln\left(\frac{p(x)}{1-p(x)}\right) = b_0 + \sum_{i=1}^N a_i x_i , i = \overline{1, N} , \qquad (3.50)$$

where $x = (x_1, \ldots, x_n)^T$ is the vector of predictive variables;

2. observe that

$$\ln\left(\frac{p(x_i+1)}{1-p(x_i+1)}\right) = b_0 + \sum_{k=1}^{i-1} a_i x_i + a_i (x_i+1) + \sum_{k=i+1}^N a_i x_i , \quad (3.51)$$

```
logit \leftarrow function(x) \{ return(log(x / (1 - x))) \}
   ) }
COPDadmRaw <- read.csv("../Data/COPD_ALL_ALIVE.csv")
outcome <- "INP_OBS_COPD_ADM_365_DAYS"
COPDadm <- transform ( COPDadmRaw ], c ( "PAT_AGE_YRS",
   outcome )],
                      PAT_AGE_YRS=round( PAT_AGE_YRS
                          ))
COPDadm[is.na(COPDadm[, outcome]), outcome] <- 0
COPDform <- as.formula( paste( "PAT_AGE_YRS_~",
   outcome, sep=""))
COPDprod <- transform ( dcast (COPDadm, COPDform,
   length ) )
colnames( COPDprod ) <- c( "PAT_AGE_YRS", "No", "Yes"
   )
COPDprod <- mutate( COPDprod, Total=Yes + No,
   Prob=Yes / Total,
                    Logit=logit ( Prob ) )
COPDprod[! is.finite( COPDprod$Logit ), "Logit"] <-
   -25
plot ( COPDprod$PAT_AGE_YRS, COPDprod$Logit,
      main="Logit_of_the_probability_of_
         hospitalization", xlab="Age,_yrs.",
      ylab = "Logit(p) = p_/ (1 - p)")
```

Listing 3.6: Example: R code for generating the logit of age-dependent propability of hospitalization.

Figure 3.11: Example: Probability of hospitalization from univariate logistic regression on patient age.

and hence

$$\ln\left(\frac{p(x_{i}+1)}{1-p(x_{i}+1)}\right) - \ln\left(\frac{p(x_{i})}{1-p(x_{i})}\right) = \\\ln\left(\frac{p(x_{i}+1)[1-p(x_{i})]}{p(x_{i})[1-p(x_{i}+1)]}\right) = a_{i} = \ln\left(OR_{multi}^{cont}\right) .$$
(3.52)

Exponentiating both sides, we obtain

$$OR_{multi}^{cont} = e^{a_i} . aga{3.53}$$

The odds ratio defined by (3.53) represents a proportional increase in the odds of encountering an outcome of interest corresponding to a unitary increase in the value of the respective (continuous) predictive variable of interest. The same note of caution with respect to the domain of the "incremental" multivariate odds ratio applies here as in the univariate case above.

In the example in Section 3.7.1, the odds ratio matrix computed for both continuous / interval and indicator variables is presented in Table 3.18.

O2016NorthShore University HealthSystem

		TT	· · · · · · · · · · · · · · · · · · ·	_!_		Multivariata analyzia				
		Univar	late analy	SIS			Multiva	riate analy	ysis	1
Variable			Confi	dence	Va-			Confi	dence	Va-
	Odds	Pr(z	inte	erval	li-	Odds	Pr(z	inte	erval	li-
	Ratio	> Z)	Lower	Upper	di-	Ratio	> Z)	Lower	Upper	di-
			boun-	boun-	ty			boun-	boun-	ty
			dary	dary				dary	dary	
ACE_INHIBITOR	1.76	0.0000	1.49	2.08	*	1.19	0.0930	1.00	1.42	
PRESCRIBED African American :	0.53	0.0000	0.40	0.69	*	0.00	0.0000	0.00	0.00	
Caucasian ANTICOAG	2.10	0.0000	1.77	2.49	*	1.21	0.0832	1.01	1.45	
PRESCRIBED ARB_PRESCRIBED	2.01	0.0000	1.65	2.45	*	1.27	0.0441	1.04	1.54	*
Asian : Caucasian	0.78	0.4497	0.41	1.48		0.00	0.0000	0.00	0.00	
ASPIRIN_PLAVIX	2.24	0.1191	0.81	6.15		1.76	0.3036	0.71	4.37	
PRESCRIBED ASPIRIN_PRESCRIBED	1.75	0.0000	1.48	2.07	*	0.91	0.3573	0.76	1.08	
BETA_BLOCKER	1.73	0.0000	1.47	2.03	*	1.03	0.7966	0.86	1.22	
PRESCRIBED CAD_IND	0.88	0.1872	0.72	1.07		0.78	0.0505	0.64	0.96	
CALCCHANBLOCKER	2.29	0.0000	1.95	2.69	*	1.25	0.0298	1.06	1.48	*
PRESCRIBED CANCER_IND	1.95	0.0027	1.26	3.01	*	0.75	0.2322	0.50	1.12	
CARDO_24MM_VISIT	1.13	0.0000	1.09	1.17	*	0.95	0.0718	0.90	1.00	

Table 3.18: . Example: Multivariate odds ratio statistics for COPD logistic regression model

Continued on next page

55

Variable		Univari	ate analy	sis			Multiva	riate analy	vsis	
Variable							· ·	,		
			Confi	dence	Va-			Confi	dence	Va-
	Odds	Pr(z	inte	erval	li-	Odds	Pr(z	inte	rval	li-
I	Ratio	> Z)	Lower	Upper	di-	Ratio	>Z)	Lower	Upper	di-
			boun-	boun-	ty			boun-	boun-	ty
			dary	dary				dary	dary	
COMBOANTHYP	1.41	0.0090	1.09	1.82	*	0.98	0.8985	0.76	1.27	
PRESCRIBED DAYS_SINCE_LAST_EF	1.00	0.0000	1.00	1.00	*	0.00	0.0000	0.00	0.00	
DEM_IND	0.69	0.3698	0.31	1.55		1.10	0.8376	0.52	2.33	
DIAB_IND	0.97	0.7916	0.79	1.20		0.97	0.8412	0.74	1.26	
DIGOXIN_PRESCRIBED	1.47	0.0072	1.11	1.94	*	0.75	0.0845	0.56	0.99	
DISCHARGED_DISP_30	5.54	0.0000	3.93	7.82	*	0.95	0.8588	0.59	1.53	
DAYS DISCHARGED_DISP_31	4.17	0.0000	3.52	4.94	*	0.00	0.0000	0.00	0.00	
365_DAYS DISCHARGED_DISP	4.32	0.0000	3.67	5.09	*	1.12	0.4286	0.88	1.42	
365_DAYS Divorced : Married	1.08	0.6221	0.80	1.46		0.00	0.0000	0.00	0.00	
EJFR_IND	3.83	0.0000	3.27	4.48	*	1.56	0.0000	1.32	1.84	*
EJFR_NUM	1.02	0.0000	1.02	1.03	*	0.00	0.0000	0.00	0.00	
ER_VISITS_365_DAYS	10.14	0.0000	7.07	14.53	*	3.60	0.0000	2.48	5.23	*
COPD_IND FEMALE_IND	1.06	0.4825	0.90	1.24		0.99	0.9511	0.86	1.15	
HF_IND	0.98	0.8453	0.81	1.19		0.51	0.0001	0.39	0.68	*

 Table 3.18 - Continued from previous page

Continued on next page

TT 1 1 0 1 0	a 1	C		
Table 3.18 –	Continued	trom	previous	page
10010 0110	0010000000	1.0	p. 0000 a0	pago

		Univar	iate analy	sis			Multiva	riate anal	ysis	
Variable			Conf	idence	Va-			Confi	dence	Va-
	Odds	Pr(z	inte	erval	li-	Odds	Pr(z	interior	erval	li-
	Ratio	>Z)	Lower	Upper	di-	Ratio	> Z)	Lower	Upper	di-
			boun-	boun-	ty			boun-	boun-	ty
			dary	dary				dary	dary	
HOSP_12M_VISIT	1.54	0.0000	1.49	1.59	*	1.10	0.0155	1.03	1.18	*
HOSP_30D_VISIT	3.93	0.0000	3.35	4.60	*	1.15	0.3746	0.88	1.51	
HOSP_365_DAYS	12.49	0.0000	10.42	14.96	*	3.72	0.0000	3.02	4.57	*
COPD_IND HTN_IND	0.91	0.2184	0.78	1.06		0.69	0.0002	0.59	0.81	*
INSULIN_PRESCRIBED	1.70	0.0001	1.31	2.21	*	0.90	0.5348	0.67	1.20	
INTUB_GT_OR_E	2.75	0.0101	1.27	5.95	*	0.90	0.8125	0.43	1.87	
2DAYS_LST_2YRS LOOPDIURETIC	1.50	0.0003	1.20	1.88	*	0.00	0.0000	0.00	0.00	
PRESCRIBED LOS_GTE_10_DAYS	3.41	0.0000	2.73	4.25	*	1.12	0.4377	0.88	1.42	
HOSP METOLAZONE	1.46	0.1391	0.88	2.43		0.92	0.7793	0.57	1.49	
PRESCRIBED MG_PCP_18M_SEEN	2.13	0.0000	1.82	2.49	*	0.00	0.0000	0.00	0.00	
IND MI_IND	0.91	0.6526	0.62	1.35		1.05	0.8382	0.73	1.51	
MILDOBDOP	1.80	0.6844	0.11	30.77		0.00	0.9665	0.00	99999	
PRESCRIBED										
								Continue	d on nort	 na.ac
								Commue	u on next j	page

$\bigcirc 2016$	
NorthShore	
University	
HealthSystem	

		Table 0.	0 00000	nucu jiom	precious	page				
		Univar	iate analy	sis			Multiva	riate anal	ysis	
Variable			Conf	idence	Va-			Confidence		Va-
	Odds	Pr(z	inte	erval	li-	Odds	Pr(z	inte	erval	li-
	Ratio	>Z	Lower	Upper	di-	Ratio	>Z)	Lower	Upper	di-
			boun-	boun-	ty			boun-	boun-	ty
			dary	dary				dary	dary	
NONINSULIN_DIAB	1.36	0.0078	1.08	1.70	*	0.89	0.4886	0.67	1.18	
PRESCRIBED NOT_PRN_MED	1.13	0.0000	1.11	1.15	*	0.00	0.0000	0.00	0.00	
TOTAL_PRESCRIBED NUM_ER_VISITS_30	10.59	0.0000	4.60	24.39	*	1.16	0.8264	0.39	3.44	
DAYS_COPD NUM_ER_VISITS_30	6.32	0.0880	1.07	37.40		2.57	0.4745	0.29	22.64	
DAYS_PNEU NUM_ER_VISITS_31	3.76	0.0000	2.81	5.03	*	0.00	0.0000	0.00	0.00	
365_DAYS_COPD NUM_ER_VISITS_31	4.46	0.0023	1.99	10.02	*	0.00	0.0000	0.00	0.00	
365_DAYS_PNEU NUM_ER_VISITS_365	3.93	0.0000	2.98	5.18	*	0.00	0.0000	0.00	0.00	
DAYS_COPD NUM_ER_VISITS_365	4.71	0.0005	2.25	9.86	*	1.05	0.9433	0.37	2.95	
DAYS_PNEU NUM_HF_HOSP_365_31	1.86	0.0000	1.59	2.17	*	0.95	0.7047	0.76	1.19	
DAYS_COUNT NUM_HOSP_30_DAYS	16.43	0.0000	12.10	22.32	*	2.08	0.0028	1.39	3.11	*
COPD										
	Variable NONINSULIN_DIAB PRESCRIBED NOT_PRN_MED TOTAL_PRESCRIBED NUM_ER_VISITS_30 DAYS_COPD NUM_ER_VISITS_31 365_DAYS_COPD NUM_ER_VISITS_31 365_DAYS_COPD NUM_ER_VISITS_365 DAYS_PNEU NUM_ER_VISITS_365 DAYS_COPD NUM_ER_VISITS_365 DAYS_COPD NUM_ER_VISITS_365 DAYS_COUNT NUM_HF_HOSP_365_31 DAYS_COUNT NUM_HOSP_30_DAYS COPD	VariableOdds RatioNONINSULIN_DIAB PRESCRIBED NOT_PRN_MED1.36 PRESCRIBED NOT_PRN_MEDNOT_PRN_MED I.131.13 TOTAL_PRESCRIBED NUM_ER_VISITS_30NUM_ER_VISITS_30 DAYS_COPD NUM_ER_VISITS_316.32 3.76 3.65_DAYS_COPD NUM_ER_VISITS_31NUM_ER_VISITS_31 3.65_DAYS_COPD NUM_ER_VISITS_3653.93 3.93 DAYS_COPD NUM_ER_VISITS_365NUM_ER_VISITS_365 DAYS_COPD NUM_ER_VISITS_3654.71 1.86 DAYS_COPD NUM_HF_HOSP_30_DAYS COPDNUM_HOSP_30_DAYS COPD16.43 COPD	Variable Univariable Variable Odds Ratio $Pr(z $ $> Z)$ NONINSULIN_DIAB PRESCRIBED NOT_PRN_MED 1.36 0.0078 PRESCRIBED NOT_PRN_MED 1.13 0.0000 TOTAL_PRESCRIBED NUM_ER_VISITS_30 10.59 0.0000 DAYS_COPD NUM_ER_VISITS_31 6.32 0.0880 DAYS_PNEU NUM_ER_VISITS_31 3.76 0.0000 365_DAYS_COPD NUM_ER_VISITS_365 3.93 0.0000 DAYS_COPD NUM_ER_VISITS_365 4.71 0.0005 DAYS_PNEU NUM_ER_VISITS_365 4.71 0.0005 DAYS_PNEU NUM_HF_HOSP_365_31 1.86 0.0000 DAYS_COUNT NUM_HOSP_30_DAYS 16.43 0.0000	Variable Univariate analy Variable Odds $Pr(z $ into Notion Ratio > Z) Lower NONINSULIN_DIAB 1.36 0.0078 1.08 PRESCRIBED 1.13 0.0000 1.11 TOTAL_PRESCRIBED 10.59 0.0000 4.60 DAYS_COPD 10.59 0.0000 2.81 365_DAYS_PNEU 3.76 0.0000 2.81 365_DAYS_COPD 3.93 0.0000 2.98 DAYS_COPD 3.93 0.0000 2.98 DAYS_PNEU 3.93 0.0000 2.98 DAYS_COPD 3.93 0.0000 2.98 DAYS_COPD 3.93 0.0000 2.98 DAYS_COPD 4.71 0.0005 2.25 DAYS_PNEU 1.86 0.0000 1.59 DAYS_COUNT 16.43 0.0000 1.59	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table 3.18 – Continued from previous page

Continued on next page

Table 3.18 –	Continued	from	previous	page
10010 0.10	Contraca	<i>J</i> 10110	preceduo	page

		Univariate analysis					Multivariate analysis				
	Variable			Confi	dence	Va-			Confidence		Va-
		Odds	Pr(z	inte	erval	li-	Odds	Pr(z	inte	erval	li-
		Ratio	> Z)	Lower	Upper	di-	Ratio	> Z)	Lower	Upper	di-
				boun-	boun-	ty			boun-	boun-	ty
				dary	dary				dary	dary	
	NUM_HOSP_30_DAYS	6.63	0.0000	4.87	9.01	*	1.26	0.3790	0.82	1.93	
	PNEU NUM_HOSP_31_365	4.12	0.0000	3.67	4.63	*	0.00	0.0000	0.00	0.00	
	DAYS_COPD NUM_HOSP_31_365	2.64	0.0000	2.40	2.90	*	0.00	0.0000	0.00	0.00	
	DAYS_PNEU NUM_HOSP_365_DAYS	4.39	0.0000	3.94	4.90	*	0.00	0.0000	0.00	0.00	
	COPD NUM_HOSP_365_DAYS	2.61	0.0000	2.39	2.85	*	1.17	0.0630	1.02	1.35	
	PNEU NUM_MISSED_APPTS	1.07	0.0000	1.06	1.08	*	0.99	0.1796	0.97	1.00	
	365 NUM_UNIQUE	1.39	0.0000	1.34	1.43	*	1.25	0.0000	1.19	1.30	*
	SPECIALTIES O2_IND	4.49	0.0000	3.49	5.79	*	1.64	0.0014	1.27	2.11	*
	ORALNITRATE	1.41	0.0151	1.07	1.86	*	0.74	0.0821	0.56	0.98	
	PRESCRIBED ORALVASODILSPERF	3.21	0.0000	2.24	4.59	*	1.28	0.2981	0.87	1.89	
	PRESCRIBED Other : Caucasian	1.43	0.0115	1.08	1.88	*	0.00	0.0000	0.00	0.00	

O2016NorthShore University HealthSystem

Continued on next page

		Univer	into analy	aia	Multivariate analysis					
V		Univar.		515 : -1	V-		muniva		y 515	17-
Variable	0.11		Conr	laence	va-	0.11		Conn	laence	va-
	Odds	Pr(z	inte	erval	11-	Odds	Pr(z	inte	erval	11-
	Ratio	>Z)	Lower	Upper	di-	Ratio	>Z)	Lower	Upper	di-
			boun-	boun-	ty			boun-	boun-	ty
			dary	dary				dary	dary	
PAT_AGE_YRS	1.00	0.3006	1.00	1.01		1.02	0.0000	1.01	1.03	*
PL_ADHD_IND	2.48	0.1289	0.77	7.98		2.14	0.2349	0.75	6.14	
PL_BIPOLAR_IND	0.44	0.1578	0.14	1.38		0.49	0.2527	0.18	1.36	
PL_CKD_IND	1.49	0.0184	1.07	2.09	*	1.00	0.9945	0.72	1.38	
PL_DEPR_IND	0.96	0.7239	0.74	1.23		0.87	0.3276	0.69	1.10	
PL_HEPCIRR_IND	0.76	0.4370	0.37	1.53		0.54	0.1247	0.28	1.04	
PL_HIV_IND	3.16	0.1183	0.75	13.41		2.81	0.2131	0.72	11.03	
PL_PD_IND	0.82	0.6420	0.37	1.86		0.67	0.3585	0.32	1.38	
PL_PM_IND	1.42	0.0336	1.03	1.96	*	0.98	0.9006	0.70	1.35	
PL_PSYCH_IND	1.32	0.5100	0.58	2.98		1.78	0.1877	0.87	3.65	
PL_SCIATICA_IND	1.14	0.1956	0.94	1.38		0.80	0.0379	0.66	0.95	*
PL_SICKLE_IND	9.48	0.0444	1.06	84.94	*	22.53	0.0178	2.59	19575	*
PLAVIX_PRESCRIBED	1.90	0.0000	1.50	2.40	*	1.44	0.0126	1.13	1.83	*
PULMO_24MM_VISIT	1.38	0.0000	1.33	1.42	*	1.17	0.0000	1.12	1.21	*
Single : Married	1.32	0.0157	1.05	1.66	*	0.00	0.0000	0.00	0.00	
SMOKER_IND	3.19	0.0000	2.44	4.17	*	2.21	0.0000	1.74	2.80	*
SPIRON_PRESCRIBED	2.05	0.0000	1.60	2.64	*	1.21	0.2251	0.93	1.58	
STATIN_PRESCRIBED	1.50	0.0000	1.28	1.76	*	0.79	0.0198	0.66	0.93	*
1	1	1	1		1	I	1	Continue	d and mont	

Table 3.18 – Continued from previous page

Continued on next page

60

 Table 3.18 - Continued from previous page

	Univariate analysis					Multivariate analysis				
Variable			Confi	dence	Va-			Confi	dence	Va-
	Odds	Pr(z	inte	erval	li-	Odds	Pr(z	inte	erval	li-
	Ratio	> Z)	Lower	Upper	di-	Ratio	> Z)	Lower	Upper	di-
			boun-	boun-	ty			boun-	boun-	ty
			dary	dary				dary	dary	
THIAZIDEDIUR	1.72	0.0000	1.43	2.08	*	1.11	0.3772	0.91	1.35	
PRESCRIBED TOTAL_LOS_HOSP	1.06	0.0000	1.05	1.07	*	0.00	0.0000	0.00	0.00	
DAYS_LST_12_MO TOTAL_MEDS	1.12	0.0000	1.10	1.14	*	1.09	0.0000	1.06	1.12	*
PRESCRIBED Unknown : Married	0.43	0.0640	0.18	1.05		0.00	0.0000	0.00	0.00	
Widowed : Married	1.25	0.0150	1.04	1.50	*	0.00	0.0000	0.00	0.00	

As can be seen from Table 3.18, the most significant predictive variables with respect to their odd ratios are NUM_HOSP_30_DAYS_COPD, NUM_-ER_VISITS_30_DAYS_PNEU, and NUM_ER_VISITS_30_DAYS_COPD. We can also observe that PAT_AGE_YRS appears to be insignificant from the point of view of the corresponding odds ratio. In spite of this, we need to bear in mind that, as pointed out in Section 3.7.2, a one year increase in patient age does not change the odds of hospitalization significantly and thus patient's age cannot be automatically discarded from the final model.

3.7.4 Assessing model coefficients

The coefficients of a linear or logistic regression are computed using a variant of the normal equation (3.10). In reality, this relationship includes the random error component

$$y = \sum_{i=0}^{N} a_i x_i + \epsilon , \qquad (3.54)$$

$$x_0 = 1,$$
 (3.55)

where the intercept has been incorporated into the general equation for convenience by virtue of (3.54). Coefficients a_i , obtained with the help of (3.54) - (3.55), are estimates, albeit *unbiased* [21]; the uncertainty in their calculation is implied by the random nature of ϵ . If we assume the normality of errors, $\epsilon \sim \mathcal{N}(0, \sigma^2)$, then the standard null hypotheses $H_0(a_i) : a_i = 0$ can then be tested by computing the t-statistic

$$t_i = \frac{\hat{a}_i - a_{i0}}{s.e.(\hat{a}_i)}, \ i = \overline{1, N},$$
 (3.56)

$$s.e.(\hat{a}_i) = \sqrt{\frac{MS_{Res}}{S_{xx}}}, \qquad (3.57)$$

$$MS_{Res} = \frac{1}{N-2} \sum_{i=1}^{N} \epsilon_i^2 , \qquad (3.58)$$

$$S_{xx} = \sum_{i=1}^{N} (x_i - \overline{x})^2$$
 (3.59)

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{3.60}$$

$$t_0 = \frac{\hat{a}_0 - a_{00}}{s.e.(\hat{a}_0)} , \qquad (3.61)$$

©2016 NorthShore University HealthSystem

62

$$s.e.(\hat{a_0}) = \sqrt{MS_{Res}\left(\frac{1}{N} + \frac{\overline{x}^2}{S_{xx}}\right)}, \qquad (3.62)$$

$$t_i \sim \chi^2_{N-2} \,. \tag{3.63}$$

The significance of the coefficient, i.e., the probability that it comes from a distribution centered at 0 is determined by the test statistic t_i . In view of 3.63, we can compute the appropriate *p*-values at the α significance level and construct the usual confidence intervals for a_i , $i = \overline{1, N}$ as

$$a_i \in \left[\hat{a}_i - t_{\frac{\alpha}{2}, N-2} \times s.e.(a_i), \hat{a}_i + t_{\frac{\alpha}{2}, N-2} \times s.e.(a_i)\right],$$
 (3.64)

In our ongoing COPD example, we can now finalize the set of predictive variables and create a model for testing and validation. Drawing upon the results presented in Table 3.18 and Section 3.7.1, we select the coefficients for model (3.18) based on the statistical significance of their odds ratios and subject matter knowledge, and calculate their statistics presented in Table 3.19.

					Va-
37 . 11	Esti-	Std.	Z	Pr(z	li-
Variable	mate	error	value	>Z)	di-
				,	ty
(Intercept)	-677	0.37	-182	0.0000	*
ACE_INHIBITOR	0.20	0.10	1.93	0.0530	
PRESCRIBED ANTICOAG	0.21	0.11	1.97	0.0485	*
PRESCRIBED ARB_PRESCRIBED	0.18	0.12	1.58	0.1137	
ASPIRIN_PRESCRIBED	-013	0.11	-124	0.2135	
BETA_BLOCKER	-010	0.10	-101	0.3127	
PRESCRIBED CALCCHANBLOCKER	0.21	0.10	2.22	0.0266	*
PRESCRIBED DIGOXIN_PRESCRIBED	-028	0.16	-169	0.0902	
EJFR_IND	0.55	0.10	5.57	0.0000	*
ER_VISITS_365_DAYS	1.05	0.22	4.76	0.0000	*
COPD_IND					

Table 3.19: . Example: COPD logistic regression model coefficients and their statistics

Continued on next page

					Va-
Variable	Esti-	Std.	Z	Pr(z	li-
variable	mate	error	value	> Z)	di-
					ty
HOSP_12M_VISIT	0.12	0.03	4.24	0.0000	*
HOSP_365_DAYS_COPD	1.66	0.11	14.85	0.0000	*
IND					
INSULIN_PRESCRIBED	-014	0.17	-086	0.3903	
INTUB_GT_OR_E	0.01	0.42	0.03	0.9771	
2DAYS_LST_2YRS					
NONINSULIN_DIAB	-004	0.14	-032	0.7524	
PRESCRIBED	0.04		- -		sle
NUM_UNIQUE	0.24	0.02	9.70	0.0000	*
SPECIALTIES			~		باد
O2_IND	0.56	0.15	3.77	0.0002	*
ORALNITRATE	-030	0.16	-184	0.0660	
PRESCRIBED					
PAT_AGE_YRS	0.01	0.00	3.73	0.0002	*
PL_PM_IND	-002	0.18	-009	0.9248	
PLAVIX_PRESCRIBED	0.26	0.14	1.87	0.0608	
PULMO_24MM_VISIT	0.14	0.02	6.35	0.0000	*
SMOKER_IND	0.85	0.15	5.69	0.0000	*
SPIRON_PRESCRIBED	-006	0.16	-036	0.7206	
STATIN_PRESCRIBED	-024	0.10	-243	0.0151	*

Table 3.19 – Continued from previous page

As follows from Table 3.19, HOSP_365_DAYS_COPD_IND, ER_VISITS_-365_DAYS_COPD_IND, SMOKER_IND, O2_IND and EJFR_IND have the most impact on the estimated probability of outcome of interest and are statistically significantly different from 0. From the clinical perspective, this makes prefect sense. On the other hand, automatically removing from the model those variables that are not statistically significantly different from 0 may result in loss of information and is not generally recommended.

3.8 Transformation of variables

In many instances, variable transformation does not change the qualitative nature of the relationship between the corresponding predictive variable and the outcome. In obvious cases, however, it may significantly improve the quality of the model as illustrated by the following, admittedly contrived, example.

Х	X^4	Y
1.00	1.00	0.02
2.00	16.00	22.74
3.00	81.00	21.94
4.00	256.00	980.14
5.00	625.00	806.77
6.00	$1,\!296.00$	719.72
7.00	$2,\!401.00$	3,142.90
8.00	4,096.00	$5,\!830.59$
9.00	$6,\!561.00$	8,408.08
10.00	10,000.00	8,833.27
11.00	$14,\!641.00$	$24,\!506.23$
12.00	20,736.00	$23,\!564.77$
13.00	$28,\!561.00$	$23,\!480.56$
14.00	$38,\!416.00$	$19,\!291.35$
15.00	$50,\!625.00$	$67,\!606.97$
16.00	$65,\!536.00$	$64,\!802.90$
17.00	$83,\!521.00$	83,203.28
18.00	$104,\!976.00$	128,786.91
19.00	$130,\!321.00$	$154,\!355.33$
20.00	$160,\!000.00$	179,868.25

The data in Table 3.20 was generated as $y = x^4 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 1)$. Constructing a straightforward linear regression model $y = \beta_0 + x\beta_1$ (cf.

Table 3.20: Example: Variable transformation

3.9) yields an expectedly poor fit depicted in Fig. **3.12a** with $R^2 = 0.72$.

Performing a simple variable transformation, $\tilde{x} = x^4$ and applying a "generalized" linear model $y = \beta_0 + \beta_1 \tilde{x}$ results in a much better fit with $R^2 = 0.98$, as can be seen in Fig. 3.12b.

The code for generating Fig. 3.12 is presented in Listing 3.7.

3.9 Including interaction terms in the model

Common sense suggests that an optimal choice among models with approximately equal performance characteristics is the one that has the fewest "moving parts". This principal is often (simplistically) referred to as *Occam's razor*[36] and quoted as "Numquam ponenda est pluralitas sine necessitate" (Plurality must never be posited without necessity), and "Frustra fit

Transformation of variables: y = a * x

Figure 3.12: Example: variable transformation from x to x^4 .

O2016NorthShore University HealthSystem

```
linMod \leftarrow function(x, y, fn, main, xlab, tx)
   ty ) {
  b \leftarrow fn(x)
  \mathbf{lm} <\!\!- \mathbf{lm}(\mathbf{y} ~\mathbf{\tilde{b}})
  coef <- coef(lm)
  yHat \langle -x \ast coef[2] + coef[1]
  plot ( b, y, main=main, col='magenta',
      xlab=xlab )
  abline( coef=coef, col='blue' )
  a \leftarrow sprintf("\%.2f", coef[2])
  b <- sprintf( "%.2f", coef[1])
  \operatorname{snb} \leftarrow \operatorname{ifelse}(\operatorname{sign}(\operatorname{coef}[1])) = 1, "+",
     "")
  text(tx, ty[1], bquote(paste(hat(y)),
     "=", (a), "x", (snb), (b) ) )
  text(tx, ty[2], bquote(paste("y=", hat(
     y ), "+", epsilon ) )
  R2 <- sprintf("\%.2f"),
     summary(lm)$r.squared )
  text(tx, ty[3], bquote(paste(R^2, "=",
      .(R2))))
}
set. seed (1)
x <- 1:20
xR \leftarrow rnorm(1:20)
y <- (x + xR)^{4}
mt <- "Transformation_of_variables:_y_=_a_*"
ty <- c(1e5, 0.9e5, 0.8e5)
linMod(x, y, I, paste(mt, "x"), "x", 5,
   ty)
linMod(x, y, function(x) \{x^4\}, bquote(
   paste(.(mt), x^4)), bquote(x^4),
    2e4, ty)
df <- data.frame(x=x, x.4=x^4, y=sprintf(
   \%6.2 f'', y)
write.csv( df, "./VarTran.csv")
```

Listing 3.7: Example: R code for linear regression.

per plura quod potest fieri per pauciora" (It is futile to do with more what can be done with less)[32]. In agreement with this principle, we generally prefer linear models to their nonlinear counterparts as long as their performance metrics do not differ significantly. There are cases, however, when a linear model simply will not do (see, e.g., the example in Section 3.8). We are not aware of any universal recipe for selecting a specific variable transformation in every possible instance. If there are sufficient reasons to suspect from general subject domain considerations that predictive variables may influence each other, introducing interaction terms may improve model performance.

			Hospi-				Hospi-
ID	Age	\mathbf{Sex}	taliza-	ID	Age	\mathbf{Sex}	taliza-
			tion				tion
1	84	М	1	16	63	М	1
2	69	\mathbf{F}	1	17	74	Μ	1
3	74	Μ	1	18	78	\mathbf{F}	1
4	69	\mathbf{F}	1	19	69	\mathbf{F}	1
5	56	\mathbf{F}	0	20	79	\mathbf{F}	1
6	66	Μ	1	21	74	\mathbf{F}	1
7	66	\mathbf{F}	1	22	64	\mathbf{F}	0
8	69	\mathbf{F}	1	23	73	\mathbf{F}	1
9	81	\mathbf{F}	1	24	59	Μ	1
10	78	Μ	1	25	84	\mathbf{F}	1
11	68	\mathbf{F}	1	26	90	Μ	1
12	67	\mathbf{F}	1	27	66	Μ	1
13	77	Μ	1	28	60	Μ	1
14	76	Μ	1	29	76	Μ	1
15	63	\mathbf{F}	0	30	69	\mathbf{F}	1

Table 3.21 illustrates a contrived example of hospitalization data for a hypothetical population of patients. For each patient in Table 3.21, both age

Table 3.21: Example: Hypothetical hospitalizations.

and sex were generated randomly, and only females whose age is at or above the median age of the sample less 5 were hospitalized¹. Since the data is random by construction, we are at liberty to use the first 20 rows of the table for training and the remaining 10 rows for testing our models. The results

¹The median age of the sample is 69, therefore all females over 64 have hospitalization = 1.

of applying a strictly linear model of the form *hospitalization* $\sim age + sex$ to the testing dataset are presented in Fig. 3.13. The results of applying a

Figure 3.13: AUC, F_1 score score and Matthews' correlation coefficient of the strictly linear logistic regression model for the hypothetical hospitalization example in Table 3.21.

linear model with an interaction term of the form *hospitalization* $\sim age + sex + age \times sex$ to the testing dataset are presented in Fig. 3.14. Not surprisingly, the performance of the model without the interaction terms (ROC curve AUC of 0.78 in Fig 3.13) is inferior to that of the model with interaction terms included (ROC curve AUC of 1.00 in Fig 3.14), and the use of the more complicated model is justified.

The code for generating Figs. 3.13 and 3.14 is presented in Listing 3.8.

3.10 Model validation

Once a model has been developed, it has to be validated to ensure that it meets development specifications. Regardless of the type of the model, it has

```
linMod <- function (train, test, inclCol, outCol, sep,
    main ) \{
  form <- formula( paste( outCol, "~", paste( inclCol,
      collapse=sep ) ) )
 gm <- glm( form, data=train, family='binomial')
  prediction <- predict (gm, test)
  perf <- auc.perf.base( prediction , test[, outCol],</pre>
     text=main )
}
set. seed (1)
n <- 30
id <- 1:n
gender <- rnorm( id )
age <- round(70 + 10 * rnorm(id))
sex <- ifelse( gender <= 0, "M", "F" )
y <- ifelse( ( age - median( age ) ) * ifelse( sex ==
   'M', 0, 1) \langle = -5, 0, 1 \rangle
mt <- "Interaction_term:_age_*_gender"
data <- data.frame( ID=id, age=age, sex=sex,
   hospitalization=y )
trainRows <-1:round( n * 2 / 3 )
testRows <- (max(trainRows) + 1):n
test <- data[testRows, ]
train <- data[trainRows, ]
main <- "Hospitalization_model_performance,_strictly_
   linear_structure"
linMod(train, test, c("age", "sex"),
   hospitalization", '+', main )
main <- "Hospitalization_model_performance,_
   interaction_terms_included"
linMod(train, test, c("age", "sex")),
   hospitalization", '*', main )
write.csv( data, "./IntTermEx.csv" )
```

Listing 3.8: Example: Hypothetical hospitalizations.

Figure 3.14: AUC, F_1 score score and Matthews' correlation coefficient of the logistic regression model with a cross term for the hypothetical hospitalization example in Table 3.21.

to be cross-validated on an independent data set, and the results compared with the training dataset to detect possible under- or overfitting. Specific validation methods for the types of model most commonly used by Clinical Analytics are described in the rest of this section.

3.10.1 Linear regression

Linear regression assumes the existence of a linear relationship between the input variables and the observed output. In general, a successful model must satisfy several requirements to be considered acceptable as a predictive tool [23]:

i sufficiently high R^2 (typically, at least 0.7) - this will confirm that a large proportion of variation in the dependent variable can be explained by the variation in the independent variable(s);

- ii reasonably good visual fit between the straight line predicted by the model and the actual functional relationship between the dependent and independent variables;
- iii sufficiently random residuals (at least no noticeable trend)

Once these requirements have been satisfied, the model can be deemed sufficiently accurate for our needs.

3.10.2 Logistic regression

Logistic regression is a classification model and thus needs to be evaluated on its ability to predict the outcome of interest. One of the most intuitive and widely accepted techniques for this purpose is computing the area under the receiver operating characteristics (ROC) curve. We adopt it as a universal measure of fit for classification models of any nature, including logistic regression. In a typical example of time-dependent data the preferred way is to proceed as follows:

- a build a regression model on the selected training set (80% of all data);
- b use the model to predict outcomes on the testing set (20% of all data);
- c compute the area under the curve (AUC) for the corresponding ROC;
- d if the AUC is acceptable, separate the dataset onto the "old" and "new" data (e.g., all years up to 1 year ago and the most recent year) and repeat the test;
- e if AUCs from different datasets are comparable and the differences between them can be reasonably explained, accept the model, otherwise, go back to the drawing board and repeat.

If the model allows backward transition from the outcome of interest (admissions), the training and test datasets can be generated from patient data using multiple observations of the same patient; in the opposite case (mortality), a random data point is chosen from the patient's time-dependent data. This approach can be justified by observing that if a patient can experience the outcome of interest multiple times, each encounter can be viewed as an independent event with a possible outcome of interest. If a patient can only experience the outcome of interest once, the use of the same patient's data accumulated over the years violates the assumption of
independence [11] between observations¹ and, additionally, ascribes disproportionally high weight to those who did not experience such outcome thus leading to potential "survivor bias" [13]².

In order to provide confidence interval boundaries for AUC to facilitate the comparison of model quality, an appropriate estimation technique needs to be selected. The most accurate estimates are based on the parametric assumption of binormality for the AUC curve [37]. Such an assumption is not unduly restrictive for large datasets, and the obtained estimates employ the usual z-statistic argument. When the number of positive outcomes is relatively small³, a semi-parametric or nonparametric estimate may be desirable. For our purposes, we deem it sufficient to construct the confidence interval for the AUCs by using repeated sampling as described in step 2 of the algorithm in Section 3.10.3.

Other measures of goodness-of-fit include (see Section 3.12 below) F_1 score and Matthews' correlation coefficient. These are presented as supplementary metrics for the purpose of identifying the optimal balance between true positive rate and specificity and usually complement each other.

Continuing with the example in Section 3.7.1, Fig. 3.15^4 presents the AUC, F_1 score and Matthews' correlation coefficient for the logistic regression model for predicting hospitalizations in COPD patients previously referenced in Table 3.19^5 . As can be seen from Fig. 3.15, the AUC for the model in question is approximately 0.75. The optimal balance between sensitivity and specificity is attained at the cutoff point of approximately 10% of the population. In other words, it appears optimal to flag approximately 1/10th of the patients as being at high risk of admission for COPD-related reasons and, if the objective is efficient case management, concentrate limited resources allocated to this task on this subgroup.

It is considered good practice to compare the results of a developed model with a benchmark "null hypothesis" option whenever possible. For example, if the object of our investigation is assessment of relative hospital-

¹Clearly, if a patient's clinical data can be observed in year 3, it implies that he or she was alive in years 1 and 2.

²An alternative opinion [30] states that conditional probability of survival embedded in "person-periods" allows for their treatment as if they were independent. Out of abundance of caution, we chose not to adopt this argument. Using the Cox proportional hazard model or generalized estimating equations [19] (GEE) eliminates such controversy.

 $^{^330}$ or fewer for each type of outcome of interest for moderate AUCs and 150 or fewer for $AUC \geq 0.95$

⁴Fig. 3.15 was generated using run.glm.model presented in Appendix E.4 and illustrated by Appendix C.

⁵Model performance metrics were calculated on the test dataset.

Figure 3.15: AUC, F_1 score score and Matthews' correlation coefficient of

©2016 NorthShore University HealthSystem

the logistic regression model for COPD.

74

ization risk for a group of patients, the corresponding benchmark could be random selection from the total population of a sample equal in size to our group. Concretely, suppose that we have developed such a model based on the Elixhauser approach [10] and selected a "naïve random" benchmark as described above. Table 3.22 summarizes the results of applying each model to the total patient population and selecting 1,000 with the highest risk score¹. The superiority of the Elixhauser model is evident: 24.4% of the

Model	Hospitalizations related to CHF, CVA, COPD, CAD or DM Foot, % of total	Observational or Inpatient Hospitalizations (Non-Pregnancy / Trauma), % of total	AUC
Random	0.80	8.20	0.50
guess Logistic regression	24.40	57.60	0.93

Table 3.22: Example: Comparison of the Elixhauser admission model with the random selection benchmark for 1,000 riskiest patients.

1,000 patients most likely to be admitted were actually admitted to the hospital during the subsequent year for specified diagnoses, compared to only 0.8% of those selected randomly. For general admissions those figures are 8.2% and 57.6% respectively. AUC comparison yields 0.5 for the random guess (as expected) and 0.93 for the Elixhauser model (excellent).

3.10.3 Validation of temporal datasets²

When working with patient data, it is common to consider time-dependent outcomes for the same individual as separate dataset entries unless an outcome of interest presents an absorbing boundary, i.e., is irreversible (e.g., in mortality risk modeling³). It is thus pertinent to ask what set of tests is sufficient to convince a reasonably skeptical examiner⁴ that a newly devel-

¹i.e., "probability of admission"; this "probability" should be understood in a relative sense.

²In our effort to keep up with contemporary technical literature, we favor the spelling of *dataset* over *data set* (cf. *database* vs. now obsolete *data base*).

 $^{^{3}\}mathrm{We}$ are considering mortality purely from the point of view of modern medicine. $^{4}\mathrm{see},~\mathrm{e.g.},~[24]$

oped model works universally well under practical circumstances. While the answer to this question is often subjective, the following testing routine has so far yielded satisfactory results for the purpose of identifying intervention candidates in the total population health management program:

- 1. separate the final usable dataset into the training and testing portions by designating a random 20% sample for testing and the remaining 80% for training the model;
- 2. repeatedly run the final model (as described by in Fig. 3.7) on training datasets obtained at the previous step until satisfied with the goodness-of-fit statistics;
- 3. execute the *forward* test as
 - (a) train the model on the first available period¹ of data;
 - (b) from the remaining period data, select the entries that are appropriate under the assumption that no posterior information is available and no patient data is given disproportional weight in the model, e.g., by selecting only one period data point of patient data at random in the mortality model;
 - (c) refine the original model as necessary until AUCs for testing period data are satisfactory;
- 4. execute the *backward* test as
 - (a) train the model on the last available period of data;
 - (b) from the remaining period data, select the entries in the same way as for the forward test;
 - (c) refine the original model as necessary until AUCs for testing period data are satisfactory;
- 5. execute the *mid history* test as
 - (a) train the model on the first and last available periods of data;
 - (b) from the remaining period data, select the entries in the same way as for the forward test;
 - (c) refine the original model as necessary until AUCs for testing period data are satisfactory;

¹most often, year

- 6. execute the last available period test as
 - (a) from all periods except the last one for which full outcome of interest data is available, select the entries in the same way as for the forward test;
 - (b) train the model on the data selected in the preceding step;
 - (c) test the model on the last period for which full outcome of interest data is available;
 - (d) refine the original model as necessary until AUCs for testing period data are satisfactory;

3.11 Predicting future outcomes

Once the test program outlined in Section 3.10.3 has yielded consistent AUC estimates and reasonably stable coefficients¹, the "production", or "forward-looking", model is constructed by training the algorithm on the whole dataset².

Sample code for an implementation of the prediction algorithm is given in Appendices C ("vanilla" logistic regression), D (Cox proportional hazard model) and E.4. The algorithms apply the respective vectors of regression coefficients (3.19) or (3.29) to generate the appropriate risk score ("probability" of outcome of interest for linear regression or hazard function for the Cox proportional hazard model). Once a risk rating has been assigned to every member of the test sample, they can be ranked by their ratings in descending order. N riskiest members can then be selected from the population as candidates for intervention.

Table 3.23 presents 10 patients at highest risk of COPD admission from the test population of 2,049 in the ongoing example from Section 3.7.1.

In Table 3.23 "Risk" is the probability of outcome of interest given by the logistic regression model.

3.12 Evaluating model performance

The Clinical Analytics team uses receiver operating characteristic (ROC) curve as the main metric for evaluating the performance of a logistic regression or Cox proportional hazard model. For evaluating the optimal balance

 $^{^{1}}$ Consistency and stability here are determined from business and "common sense" considerations rather than mathematical estimates.

 $^{^2 \}rm i.e.,$ by expanding the training dataset in the first step of the algorithm to 100% of the data and shrinking the testing dataset to nothing.

Patient	Risk
1	0.98
2	0.97
3	0.97
4	0.96
5	0.95
6	0.94
7	0.94
8	0.93
9	0.92
10	0.92

Table 3.23: Example: 10 patients at highest risk of COPD admission from a population of 2,049.

between true positive rate and specificity, F_1 score and Matthews' correlation coefficient are also included.

3.12.1 Receiver operating characteristics curve

ROC curves are an essential tool for assessing the quality of a classification model. Table 3.24 illustrates the relationship between the actual and predicted outcomes as reflected by such curves.

 Table 3.24:
 Tabularized relations between truth/falseness of the null hypothesis and outcomes of the test

ROC curve graphs are used for internal research purposes and for presentation to technical audiences familiar with this concept. The ROC curve for a survival model describing the mortality risk in heart failure patients is presented as an example in Fig. 3.16.

Figure 3.16: Sample receiver operating characteristic (ROC) curve graph.

An example of a plot combining ROC, F_1 score and Matthews' correlation coefficient was presented earlier in Fig. 3.6

For historical reasons, the Clinical Analytics team has found it more instructive and easily digestible for executive and practitioner audiences to employ combined lift curve / positive predictive value graphs as a tool for visualizing the quality of a predictive model. lift curve / positive predictive value graphs are presented double-scaled with true positive rate plotted on the left in red, and positive predictive value on the right in blue. The abscissa (x-axis) represents the percentage of the (test) population that was classified by the model as having an outcome of interest. The combined

Figure 3.17: Sample lift curve graph.

As follows from Fig. 3.17, should the riskiest 5% of the patients selected by the model be chosen for intervention, true positive rate in that population will be approximately 50%. This rate reaches approximately 10% in the general population, hence the lift achieved by applying the model for the top 5% is close to 5.

3.12.2 Summary of model performance metrics

In order to evaluate model performance, it is helpful to summarize some of the relevant model metrics in one place. Table 3.25 is an extension of Table 3.23 that includes the corresponding performance parameters calculated for the same 10 patients on the original test dataset.

In Table 3.23 columns have the following meanings:

Patient	Risk	Actual	#	%	PPV	specificity	lift
		out-	flagged	flagged			
		come					
1	0.98	1	1	0.05%	1.00	0.00	9.31
2	0.97	0	2	0.10%	0.50	0.00	4.66
3	0.97	0	3	0.15%	0.33	0.00	3.10
4	0.96	0	4	0.20%	0.25	0.00	2.33
5	0.95	1	5	0.24%	0.40	0.01	3.73
6	0.94	1	6	0.29%	0.50	0.01	4.66
7	0.94	1	7	0.34%	0.57	0.02	5.32
8	0.93	1	8	0.39%	0.63	0.02	5.82
9	0.92	0	9	0.44%	0.56	0.02	5.17
10	0.92	0	10	0.49%	0.50	0.02	4.66

Table 3.25: Example: 10 patients at highest risk of COPD admission from a population of 2,049 with model performance metrics included.

Risk	-	probability of outcome of interest given by the
		logistic regression model;
Actual outcome	-	actual observed outcome;
# flagged	-	number of patients on the given and preceding
		rows for whom the model predicted positive
		outcomes;
% flagged	-	percentage of such patients relative to the total
		population (2,049 individuals);
PPV	=	positive predictive value.
The output templete	foot	wood in Table 2.25 is adopted by the Clinical

The output template featured in Table 3.25 is adopted by the Clinical Analytics team as the preferred way of illustrating the model performance. This layout is easy to present and explain to the upper management in order to facilitate operational business decisions, including those concerning resource allocation.

If the model with an irreversible outcome described in Section B is tested on a randomly sampled dataset that includes a single entry for surviving patients, an argument can be made that the positive predictive value of the model in Table 3.25 is inflated by underweighting survivor's data. This concern can be addressed by selecting the data from the most recent time period (e.g., year) as the test dataset¹ and using it to calculate the corresponding model performance metrics in this table. If this approach is followed, all

 $^{^{1}{\}rm i.e.},$ using all data, excluding the most recent period, with one randomly selected entry per each multiple-year survivor as the training dataset.

data in the test population will be reduced to a single entry per patient with equal weights. Linear regression models described in Section 3.2 and Cox proportional hazard models described in Section 3.4 do not require this adjustment.

4 Presentation of results

4.1 Output data storage

The storage model for output data should facilitate the achievement of the following objectives:

- keep project-related data together in a form that is
 - compact,
 - logical,
 - readable and
 - easily accessible;
- make it easy to perform unit testing;
- help compare the results of incremental changes in the code;
- support creating time snapshots of the model for auditing purposes.

The above-mentioned objectives can be accomplished more easily if

- 1. readable output files are stored in the **Results** directory (as mentioned in Section 6.2),
- 2. graphs (PDFs, JPGs etc.) are stored in the Graphs subdirectory of Results
- both readable files and graphs are cataloged by date of the corresponding program run in separate directories named yyyy-mm-dd with appropriate commentary appended separated by underscores (e.g., 2014-05-14_Hip_Knee)

4.2 Output data naming conventions

83

All output files are named using abbreviated functional descriptions of their contents and are date stamped for subsequent reference. Naming conventions for output files are listed in Table 4.1.

em
em

Output type	File type	Naming convention	Example
Model coefficients and	.csv	Coeff_All_[yyyy	Coef_All_2014_10
their statistics		mm_dd].csv	28.csv
Predicted risk	.csv	AllRisk_[yyyy	AllRisk_2014_10
probabilities and		mm_dd].csv	28.csv
model performance			
statistics for all			
patients of interest Predicted risk	CSV	HiBisk [vvvv -	HiBisk 2014 10 -
probabilities and		mm ddl csv	28 csv
model performance			
statistics for high risk			
patients			
Predicted risk	.csv	HiRiskRand100	HiRiskRand100
probabilities and		[yyyy_mm_dd].csv	2014_10_28.csv
model performance			
statistics for 100			
highest risk patients		U.D. 1 D. 1100	U.D. 1 D. 1100
PPV, specificity and	.csv	HIRISKRand100	HIRISKRand100
F_1 score for 100		[yyyy_mm_dd].csv	2014_10_28.csv
highest risk patients	10		
PPV and sensitivity	.par	PPV_Sense_Full	PPV_Sens_Full
lift curves	1.0	[yyyy_mm_dd].pdf	2014_10_28.pdf
ROC, F_1 score and	.pdf	AUC_[yyyy_mm	AUC_2014_12
Matthews' correlation		dd].pdf	03.pdf
coefficient curves			

Table 4.1: Naming convention for output files.

4.3 Presentation format

Most of the research projects carried out by the Department of Clinical Analytics produce data outcome that can best be digested by the audience if presented in the form of tables and graphs. While it is difficult to prescribe a universal format for a successful table, it is nevertheless desirable to establish the broadest possible documentation standards some of which are listed below.

I Output files

- i numeric output that will be ingested into Excel or R for further processing should be stored as .csv files,
- ii plain text files should be avoided whenever possible,
- iii if extended markup is desired (e.g., web browser output), XML output is appropriate,
- iv where extensive data post-processing manipulation is anticipated, a (sandbox) database table for the results is desirable;
- II Graphs
 - i preferably, graphs should be stored as PDF files with axes, legend and tick marks clearly labeled and easily readable (in general, 12 pts. or larger),
 - ii landscape orientation is preferred,
 - iii legend coloring scheme should be consistent with that of the plot itself.

Documentation not requiring extensive mathematical formulae, sophisticated graphics or cross-referencing can be created in Microsoft Word. Papers that do require substantial typesetting should be created in IAT_EX , if possible.

5 Data storage

5.1 Input data storage

Interim input data can be stored as text, CSV or XML files, Excel spreadsheets or sandbox databases. For consistency, it is preferable to keep input data in the "Data" folder of the corresponding project folder. When the data is intended for use by other people, it is helpful to use a single format that can be easily picked up and converted into a form convenient for its consumer. For most practical purposes, CSV is preferred. If the data is stored in a sandbox database, SQL scripts used for data extraction can be stored in the "Code" folder of the project. If the creation of a shared internal database is desirable and possible for the purpose of the project, it can be set up on the common server with tables named for specific tasks.

5.1.1 Nomenclature of input variables

In an effort to standardize the nomenclature of input variables, a suggested list of common names is presented in Table 5.1.

T 1 1	F 1	T 1		1 /
Table	5.1:	Input	variable	nomenclature

Predictive variable	Type	Meaning
ACE_INHIBITOR_PRESCRIBED	indicator	active angiotensin-
		converting-enzyme
		inhibitor prescription
ADN_EVER	indicator	active advanced directive
AICD_IND	indicator	note automated implantable
ANTICOAG_PRESCRIBED	indicator	cardioverter-defibrillator active anticoagulant
ARB_PRESCRIBED	indicator	prescription active angiotensin receptor
AS_OF_DATE	date	blocker prescription date of record
ASPIRIN_PLAVIX_PRESCRIBED	indicator	active aspirin and
		clopidogrel prescription
ASPIRIN_PRESCRIBED	indicator	indicator active aspirin prescription
BETA_BLOCKER_PRESCRIBED	indicator	active beta-blocker
BMI06_MO	continuous	prescription body mass index, 6
BMI_12_MO	continuous	months ago body mass index, 12
BMI24_MO	continuous	months ago body mass index, 24
BMI36_MO	continuous	months ago body mass index, 36
BMI_48_MO	continuous	months ago body mass index, 48
BMI_MR	continuous	months ago body mass index, most
BNP06_MO	continuous	recent brain natriuretic peptide, 6
BNP_12_MO	continuous	months ago brain natriuretic peptide,
BNP24_MO	continuous	12 months ago brain natriuretic peptide,
BNP36_MO	continuous	24 months ago brain natriuretic peptide,
		36 months ago

		J. J
Predictive variable	Type	Meaning
BNP_48_MO	continuous	brain natriuretic peptide,
		48 months ago
BNP_MR	continuous	brain natriuretic peptide,
CAD IND	indicator	most recent cardioarterial disease
CALCCHANBLOCKER -	indicator	active calcium channel
PRESCRIBED		blocker prescription
CANCER_DX	indicator	cancer diagnosis
CANCER_IND	indicator	cancer
CARD_MOST_SEEN_IND	indicator	most seen by a cardiologist
CARDO_24MM_VISIT	continuous	# of times seen by a
		cardiologist in the last 24
CARDO_12MM_VISIT	continuous	months $\#$ of times seen by a
		cardiologist in the last 12
CHOL06_MO	continuous	months total cholesterol level, 6
CHOL_12_MO	continuous	months ago total cholesterol level, 12
CHOL_24_MO	continuous	months ago total cholesterol level, 24
		months ago
CHOL36_MO	$\operatorname{continuous}$	total cholesterol level, 36
CHOL_48_MO	continuous	months ago total cholesterol level, 48
CHOL_MR	continuous	months ago total cholesterol level,
COMBOANTHYP_PRESCRIBED	indicator	most recent active combined
		antihypertensive
COPD_IND	indicator	prescription indicator chronic obstructive
		pulmonary disorder
CREAT06_MO	continuous	creatinine, 6 months ago
CREAT_12_MO	continuous	creatinine, 12 months ago
CREAT_24_MO	continuous	creatinine, 24 months ago
CREAT36_MO	continuous	creatinine, 36 months ago
CREAT_48_MO	continuous	creatinine, 48 months ago

Table 5.1 – Continued from previous page

Table 5.1 – Continued from previous page

Predictive variable	Type	Meaning
CREATMR	continuous	creatinine, most recent
CSO_EVER	continuous	do-not-resuscitate standing
DAYS_SINCE_LAST_EF	continuous	order at any time $\#$ of days since the last
DBP06_MO	continuous	ordered diastolic blood pressure, 6
DBP_12_MO	continuous	diastolic blood pressure, 12
DBP24_MO	continuous	diastolic blood pressure, 24
DBP36_MO	continuous	months ago diastolic blood pressure, 36
DBP48_MO	continuous	months ago diastolic blood pressure, 48
DBPMR	continuous	months ago diastolic blood pressure,
DEATH_365_DAYS	indicator	most recent death occurred within the 365 days following
DEATH_365D_IND	indicator	AS_OF_DATE death occurred within the 365 days following
DEATH_AS_OF_DATE	date	AS_OF_DATE date of death if occurred within the 365 days
DEATH_DATE	date	following AS_OF_DATE date of death
DEM_IND	indicator	dementia
DIAB_IND	indicator	diabetes
DIGOXIN_PRESCRIBED	indicator	active digoxin prescription
DISCHARGED_DISP_30_DAYS	continuous	# of hospital discharges in
DISCHARGED_DISP_31_365_DAYS	continuous	the last 30 days # of hospital discharges between the last 31 and
DISCHARGED_DISP_365_DAYS	continuous	$\begin{array}{l} 365 \text{ days} \\ \# \text{ of hospital discharges in} \\ \text{the last } 365 \text{ days} \end{array}$
		Continued on order

	α \cdot \cdot \cdot	e		
Table $5.1 -$	Continued	from	previous	page

Predictive variable	Type	Meaning
EJFR_DATE	date	date of ejection fraction
EJFR_NUM	continuous	test ejection fraction value
FIRST_AICD_DATE	date	date of first implantation
		of an automated
		implantable
FIRST_HF_DX_DATE	date	cardioverter-defibrillator date of first heart failure
		diagnosis
FRAM_TOTAL_POINTS	continuous	Framingham risk score
GENDER_CODE	categorical	gender
HDL06_MO	continuous	high-density lipoprotein
HDL12_MO	continuous	cholesterol, 6 months ago high-density lipoprotein
HDL24_MO	continuous	cholesterol, 12 months ago high-density lipoprotein
HDL36_MO	continuous	cholesterol, 24 months ago high-density lipoprotein
HDL48_MO	continuous	cholesterol, 36 months ago high-density lipoprotein
HDLMR	continuous	cholesterol, 48 months ago high-density lipoprotein
		cholesterol, most recent
HEMOGL_MR	continuous	hemoglobin, most recent
HF_IND	indicator	heart failure
HOSP_12M_VISIT	continuous	# of hospital visits in the
HOSP_30D_VISIT	continuous	last 12 months $\#$ of hospital visits in the
		last 30 days
HTN_IND	indicator	hypertension
INP_OBS_COPD_ADM_365_DAYS	indicator	admitted to the hospital
		for observation for
		COPD-related issues in
		the last 365 days
INP_OBS_HF_365_DAYS	indicator	admitted to the hospital
		for HF-related issues in the
		last 365 days
		Continued
		Continuea on next page

	Table	5.1 -	Continued	from	previous	page
--	-------	-------	-----------	------	----------	------

Predictive variable	Type	Meaning
INP_OBS_HF_ADM_365_DAYS	indicator	admitted to the hospital
		for observation for
		HF-related issues in the
		last 365 days
INSULIN_PRESCRIBED	indicator	active insulin prescription
INTUB_GT_OR_E_2DAYS_LST	indicator	two or more intubation
2YRS		days in the last two years
IVNITRATE_PRESCRIBED	indicator	INDICTOR IV nitrate
IVVASODILSPERF_PRESCRIBED	indicator	IV vasodilator
LDL06_MO	continuous	low-density lipoprotein, 6
LDL12_MO	continuous	months ago low-density lipoprotein, 12
		months ago
LDL24_MO	continuous	low-density lipoprotein, 24
	,.	months ago
LDL36_MO	continuous	low-density lipoprotein, 36
LDL48_MO	continuous	low-density lipoprotein, 48
LDLMR	continuous	months ago low-density lipoprotein,
LOOPDIURETIC_PRESCRIBED	indicator	most recent active loop diuretic
LOS_GTE_10_DAYS_HOSP	indicator	prescription indicator hospitalization with length of stay exceeding 10 days
MADITAL STATUS	astororias	indicator
MARITAL STATUS METOLAZONE DESCRIPED	indicator	naritai status
METOLAZONELI RESCRIDED	mulcator	proscription
MG_ONC_VISIT	indicator	visited a medical group
		oncologist
MG_PCP_18M_SEEN_IND	indicator	medical group physician
		visited within the last 18
MC DCD 24M SEEN IND	indicator	months
WIG_I OF _24WI_5EEN_IND	mulcator	visited within the last 24
		months
MI_IND	indicator	myocardic infarction

'	Table 5	5.1	- (Continued	l from	previous	page

Predictive variable	Type	Meaning
MILDOBDOP_PRESCRIBED	indicator	active mild organic brain
		disease opioid prescription
MR_CARD_DATE	date	indicator most recent cardiologist
MD CONTACT DATE	1-4-	visit
MR_CONTACT_DATE	date	most recent contact date
MR_PACEMAKER_DATE	date	most recent Pacemaker
MR_PHY_ID	ID	ID of the most recent
MR_VISIT_MG_IND	indicator	attending physician attended to by a medical
		group physician during the
MR_VISIT_PRACTICE	categorical	most recent hospital visit practice name of the
		physician during the most
		recent hospital visit
MR_VISIT_PRIM_SPEC	categorical	primary specialty of the
		physician during the most
		recent hospital visit
NONINSULIN_DIAB_PRESCRIBED	indicator	active non-insulin diabetes
		prescription
NOT_PRN_MED_TOTAL	continuous	active non-pro-re-nata
NUM CARD SEEN MOST I ST -	continuous	# of times seen by a
24 MO	continuous	$\frac{1}{4}$ of times seen by a cardiologist in the last 2
24_10		vears
NUM_ER_VISITS_30_DAYS_COPD	continuous	# of Emergency
		Department visits for
		COPD in the last 30 days
NUM_ER_VISITS_30_DAYS_PNEU	continuous	# of Emergency
		Department visits for
		pneumonia in the last 30
		days
NUM_ER_VISITS_31_365_DAYS	continuous	# of Emergency
COPD		Department visits for
		COPD between the last 31
		and 365 days
I		Continued on next page

Table 5.1 – Continued from previous pa
--

Predictive variable	Type	Meaning
NUM_ER_VISITS_31_365_DAYS	continuous	# of Emergency
PNEU		Department visits for
		pneumonia between the
		last 31 and 365 days
NUM_ER_VISITS_365_DAYS_COPD	continuous	# of Emergency
		Department visits for
		COPD in the last 365 days
NUM_ER_VISITS_365_DAYS_PNEU	continuous	# of Emergency
		Department visits for
		pneumonia in the last 365
		days
NUM_HF_HOSP_365_31_DAYS	continuous	# of hospital visits for
		heart failure between the
NUM HOCD 20 DAVC		last 31 and 365 days
NUM_HOSP_30_DAYS	continuous	# of days spent in the last 20 days
NUM HOSP 30 DAVS CHE	continuous	# of days spent in the
	continuous	hospital for congestive
		heart failure in the last 30
		davs
NUM_HOSP_30_DAYS_COPD	continuous	# of days spent in the
		hospital for COPD in the
		last 30 days
NUM_HOSP_30_DAYS_PNEU	continuous	# of days spent in the
		hospital for pneumonia in
		the last 30 days
NUM_HOSP_31_365_DAYS_COPD	continuous	# of days spent in the
		hospital for COPD
		between the last 31 and
		365 days
NUM_HOSP_31_365_DAYS_PNEU	continuous	# of days spent in the
		hospital for pneumonia
		between the last 31 and
		365 days
NUM_HOSP_365 _DAYS_CHF	continuous	# of days spent in the
		hospital for congestive
		heart failure between in
		the last 30

Predictive variable	Type	Meaning
NUM_HOSP_365_DAYS	continuous	# of days spent in the
		hospital between in the
		last 30
NUM_HOSP_365_DAYS_COPD	continuous	# of days spent in the
		hospital for COPD in the
		last 365 days
NUM_HOSP_365_DAYS_ICU	continuous	# of days spent in the
		intensive care unit in the
		last 365 days
NUM_HOSP_365_DAYS_PNEU	continuous	# of days spent in the
		hospital for pneumonia in
		the last 365 days
NUM_KCC_VISIT	continuous	# of visits to Kellogg
NIIM MISSED APPTS 3 VRS	continuous	Cancer Center # of missed appointments
NOW_WISSED_ATT 15_5_1105	continuous	# of missed appointments
NUM MISSED APPTS 365	continuous	# of missed appointments
	continuous	π of missed appointments
NUM UNIQUE SPECIALTIES	continuous	# of unique specialties of
		physicians seen by the
		patient
O2_IND	indicator	active oxygen prescription
		indicator
ORALNITRATE_PRESCRIBED	indicator	active oral nitrate
		prescription
ORALVASODILSPERF	indicator	active oral vasodilator
PRESCRIBED		prescription indicator
PACEMAKER_IND	indicator	Pacemaker implanted
PAT_AGE_YRS	continuous	patient age
PAT_MRN_ID	ID	patient MRN ID
PCP_ID	ID	primary care physician ID
PCP_MG_IND	indicator	has a primary care
		physician from the medical
		group
PCP_PRAC_NAME	categorical	primary care physician
		practice name
PCP_PRIM_SPEC	categorical	primary care physician
		specialty

Table 5.1 – Continued from previous page

	Table !	5.1 -	Continued	from	previous	page
--	---------	-------	-----------	------	----------	------

Predictive variable	Type	Meaning
PL_ADHD_IND	indicator	ADHD
PL_BIPOLAR_IND	indicator	bipolar disorder
PL_CKD_IND	indicator	chronic kidney disease
PL_DEPR_IND	indicator	depression
PL_HEPCIRR_IND	indicator	hepatic cirrhosis
PL_HIV_IND	indicator	HIV/AIDS
PL_PD_IND	indicator	Parkinson's disease
PL_PM_IND	indicator	psychosomatic medicine
		patient indicator
PL_PSYCH_IND	indicator	psychosis
PL_SCIATICA_IND	indicator	sciatica
PL_SICKLE_IND	indicator	sickle cell anemia
PLATMR	continuous	platelets, most recent
PLAVIX_PRESCRIBED	indicator	active clopidogrel
		prescription
PULMO_24MM_VISIT	continuous	# of times seen by a
		pulmonologist in the last
	1	24 months
RACELETHNICHTY	categorical	race and ethnicity category
SBP_06_MO	continuous	systolic blood pressure, b
SDD 19 MO	continuous	months ago
5DF12_MO	continuous	months are
SBP 24 MO	continuous	systolic blood pressure 24
	continuous	months ago
SBP 36 MO	continuous	systolic blood pressure, 6
		months ago
SBP_48_MO	continuous	systolic blood pressure, 48
		months ago
SBPMR	continuous	systolic blood pressure,
	<i>.</i> .	most recent
SBP_MR	continuous	systolic blood pressure, b
SMOKER IND	indicator	months ago
SODIUM MR	continuous	active shicking
SODIOMI-MIL SDIDAN DDESADIDED	indicator	sourum, most recent
SI IIION_F RESURIDED	mulcator	programination indicator
		prescription indicator

'	Table 5.1 –	Continued fr	$rom\ previous$	page

Predictive variable	Type	Meaning
STATIN_PRESCRIBED	indicator	active statin prescription
STATUS	indicator	indicator alive or dead
TEN_YR_RISK_PCT	continuous	10-year resk percentage
THIAZIDEDIUR_PRESCRIBED	indicator	active thiazide diuretic
TOTAL_LOS_HOSP_DAYS_LST_12 MO	continuous	prescription indicator total length of hospital stays in days in the last 12
TOTAL_MEDS_PRESCRIBED	continuous	months total $\#$ of medications
TRIGL_06_MO	continuous	prescribed triglycerides, 6 months ago triglycerides, 12 months
	continuous	ago
TRIGL24_MO	continuous	triglycerides, 24 months
TRIGL36_MO	continuous	ago triglycerides, 36 months
TRIGL48_MO	continuous	ago triglycerides, 48 months
TRIGLMR	continuous	ago triglycerides, most recent
VISIT_PHY_ID	ID	ID of the physician seen
VISIT_PHY_MG_IND	indicator	during the last visit physician seen during the last visit is from the
VISIT_PRACTICE_NAME	categorical	medical group practice name of the
VISIT_PRIM_SPEC	categorical	last visit primary specialty of the physician seen during the
		last visit
WEIGHT06_MO	continuous	weight, 6 months ago
WEIGHT12_MO	continuous	weight, 12 months ago
WEIGHT24_MO	continuous	weight, 24 months ago
WEIGHT36_MO	continuous	weight, 36 months ago
WEIGHT_48_MO	continuous	weight, 48 months ago
WEIGHTMR	continuous	weight, most recent

5.2 Formatting and storage of intermediate results

During the execution of a predictive analytics script, intermediate files are stored in the project directory tree in the directory titled "Results/Interim". Intermediate plots are stored as PDF files, tables are saved as CSV files. All output files are named using abbreviate functional descriptions of their contents and are date stamped in order to preserve research history and ensure reproducibility of the results. Naming conventions for interim output files are listed in Table 5.2.

6 Coding practices

6.1 Revision control

Revision control is essential for incremental and cooperative development. Git is currently the suggested tool of choice for implementing a robust framework for sharing and improving the code. A centralized local Git repository for the Clinical Analytics team is not available at the time of this writing (February 2020), however, interim measures can be taken to ensure that changes made to the code are at least traceable to its developer(s). Collaboration Portal is currently used as a proxy for the centralized code repository, and all current code should periodically be placed on the portal to facilitate quality control and cross-training of the department team members. In preparation for the implementation of the centralized Git repository, all team members should implement Git framework on their local computers and regularly check in working code with appropriate descriptive comments. If this practice is followed, the creation of a centralized Git node will be reduced to pushing individual repositories to the designated location and should take place with minimum resource diversion from higher priority tasks.

Once the central repository is set up, one person (presumably, the project manager) should be designated as the administrator with one or two team members serving as backup resources fully cross-trained on the system functionality. The following is a suggested list of good repository maintenance practices in the form of do's:

- DO take regular snapshots of COMPILABLE CODE;
- DO write concise, informative, itemized comments for each commit highlighting the most significant changes from the previous version;
- DO minimize the time you keep the code checked out;

Output type	File type	Naming convention	Example
Univariate odds ratios	.csv	OR_[yyyy_mm	OR_2014_10_28.csv
for indicator variables		dd].csv	
Univariate odds ratios	.csv	UniOR_[yyyy	UniOR_2014_10
for all variables		mm_dd].csv	28.csv
Odds ratios for specific	.csv	[Variable Name]	Ethnicity_2014
categorical variables		[yyyy_mm_dd].csv	10_28.csv,
			$MaritalStatus_{-}$
			2014_10_28.csv
Multivariate odds	.csv	OR_All_[yyyy	OR_2014_10_28.csv
ratios for indicator		mm_dd].csv	
Highly correlated	.csv	CorInd_Prior	CorInd_Prior
indicator variables		[vvvv_mm_dd].csv	2014_12_11.csv
displayed as a matrix		[0000]	
Highly correlated	.csv	CorInd	CorInd
indicator variables		PriorTable_[yyyy	PriorTable_2014
displayed as pairs		mm_dd].csv	12_11.csv
Highly correlated	.csv	CorNum_Prior	CorNum_Prior
continuous / interval		[yyyy_mm_dd].csv	$2014_{12}_{11.csv}$
variables displayed as			
a matrix Highly correlated	CSV	CorNum -	CorNum -
continuous / interval	.051	PriorTable [vvvv -	PriorTable 2014 -
variables displayed as		mm ddl csy	19 11 csv
nairs			12_11.051
Baseline hypothesis	.csv	NullHyp_[yyyy	NullHyp_2014_10
quality data		mm_dd].csv	28.csv
Correlation matrix	.pdf	Corr_Ind_[yyyy	Corr_Ind_2014_12
level plot for indicator		mm_dd].pdf	11.pdf
variables	10		C N 2014
Correlation matrix	.pdf	Corr_Num_[yyyy	Corr_Num_2014
level plot for		mm_dd].pdf	12_11.pdf
continuous / interval			
variables Correlation matrix	ndf	Corr Mat All -	Corr Mat All -
level plot for all	, pur	[vvvv mm dd] pdf	2014 12 11 pdf
variables			pu

Table 5.2: Naming convention for interim output files.

- DO conduct unit tests before checking in the code to make sure it is backward compatible.
- DO merge branches at the first opportunity.

and don'ts:

- DON'T check in code that does not compile;
- DON'T check in code that will break the build;
- DON'T store the executable, compiled, auxiliary or any other binary files with the source;
- DON'T create more branches than necessary.

(see, e.g., [9], [4], [20]).

6.2 Code storage

The following is a suggested directory structure for storing project code:

- Methodology
 - methodology documents and white papers describing the algorithm;
 - testing and implementation procedures;
 - production implementation requirements;
- Data
 - input data organized by run date, functionality or model version as appropriate;
 - tools (e.g., Excel spreadsheets) for pre-processing input data (if applicable);
- Code
 - project files (if applicable);
 - source code differentiated by language (if applicable):
 - * R
 - * Python
 - * SQL

- * C#
- * Other;
- Log
 - log and error files (if applicable);

• Results

- output data files by run date, functionality or model version as appropriate;
- graphical output by run date, functionality or model version as appropriate;

6.3 Code review

Peer review is an indispensable code verification and validation tool that also facilitates the development of robust, scalable and reusable code. Once a developer has completed a new release to his or her satisfaction, they should initiate code review with a designated peer. The assignment of peers can be very informal, especially when the new model has been confined to the domain of narrow expertise. It is considered beneficial to the quality of the algorithm to have a person less familiar with the methodology review and, time permitting, replicate the results of the newly shipped release. In the absence of a designated QA department, the only defense against inadvertent flaws in the code is the institution of a process that requires the algorithm's author to fully explain the methodology and coding decisions behind it to "skeptical" colleague. Such colleague should understand the basic concepts but not be biased in any way towards accepting the result. Resources permitting, having more than one person review the code would strengthen the quality control process - but we have to be realistic about what we can expect of ourselves given more pressing time commitments.

Once the code has been review by a designated "tester", it can be tagged as "production version" in the repository thus becoming an official release.

6.4 Naming conventions

If words of command are not clear and distinct, if orders are not thoroughly understood, the general is to blame.

attributed to Sun Tzu[34]

Names of objects used throughout the coding code should be clear, concise, consistent and descriptive. Suggested naming conventions are detailed in Table 6.1.

Lan-	Ob-	Scope	Conflicts	Naming convention	Comment
guage	ject			_	
	type				
	vari-	any	none	capitalLetterDi-	
	able	scope		viders	
		local	none	capitalLetterDi-	project-specific
				viders	functions not tested
					for generic use
			no	func.that.works	use simple dot
			naming		separation if no
			$\operatorname{conflict}$		external package
			with		functions with the
			external		same name exist
	func-	pack-	packages		
	tion	aged	same	NS.CA.func.that	prepend NS.CA
			name as a	.works	(NorthShore
			function		Clinical Analytics)
			from an		to a dot-separated
			external		function name
			package		
R	pack-	global	none	NS.CA.capitalLetter-	mark packages as
	age			Dividers	developed by
					NorthShore Clinical
					Analytics

 Table 6.1:
 Naming conventions

Continued on next page

Lan-	Ob-	Scope	Conflicts	Naming convention	Comment
guage	ject				
	type				
	proj-	global	none	SentenceCase_with	abbreviations in
	ect			underscore	ALLCAPS, project
					functionality in
					SentenceCase,
					separation by
					underscores
		local	none	runProjectName.R	highest-level
					function
					("Dispatcher")
			no	packageName.R	minimally
	file		naming		descriptive short
			conflict		names are
			with		encouraged
			external		
		pack-	packages		
		aged	same	NS.CA.packageName	prepend NS.CA to
			name as	.R	the package name
			an		
			external		
			package		

Table 6.1 – Continued from previous page

6.5 Writing quality code

The definition of what constitutes quality code in any programming language could be the subject of a lengthy debate that is best carried out away from volatile compounds and other easily inflammable materials. Below follow a few fundamental principles that the original writers of this document believe to be universal and rarely disputed.

6.5.1 R

- Write readable code:
 - create a high level function that calls analytical and auxiliary functions as needed;
 - reference packages only where the use of such packages is required at the lowest level;

©2016 NorthShore University HealthSystem

101

- indent your code
- use spaces around operators, after commas, after opening and before closing braces and parentheses;
- wrap long lines at column 80 (remember the punch cards? I'm only partially joking here...);
- use knitr-style comments;
- in a function, first list the required, then the optional parameters.
- Write meaningful comments:
 - in a function
 - * explain what the function is for;
 - * describe input and output arguments;
 - * list any specific parameter values that present special cases.

The mode function in the NS.CA.statUtils package is an example:

```
## ----- NS.CA.mode -----
## Mode(s) of the distribution
₩₩ Usage
\#\#\# NS.CA.mode(x, fun=function(y) {y})
## Arguments
\#//// x - matrix or data frame containing the
     distribution(s) (convert to matrix if list)
\#//\# fun - function determining which mode to
     select in the multimodal case
NS.CA.mode \leftarrow function(x, fun=function(y) {y}) {
   ux \leftarrow unique(x)
   t < -tabulate(match(x, ux))
   \operatorname{fun}\left(\operatorname{ux}\left[\operatorname{\mathbf{which}}\left(\mathbf{t} = \operatorname{\mathbf{max}}(\mathbf{t})\right)\right]\right)
}
- in a loop
    * mark nested long loops if necessary;
```

- * document "forks" as appropriate
- in an if-then-else structure
 - * explain what the logic means when necessary;

- * mark matching braces as needed.
- Favor sapply, lapply and ddply over for;
- Above all, DO NOT copy and paste! If a piece of code is used more than once, turn it into a function instead.
- Avoid rbind wherever possible since it can be slow.
- Reduce early and often, e.g.,

```
\# aggregated charges and costs
```

```
totalChgAll[[aggregator]] <- Reduce( function(...)
    merge(..., by=totalGroupBy, all=T, suffixes=
    totSuff), totChgCostsNotNull)</pre>
```

Accepted naming conventions are listed in Table 6.1.

6.6 Testing and QA

The design stage of application development is an excellent time to ensure that subsequent testing and validation of the model progress as smoothly as possible. Many of the issues arising at a later stage can be mitigated by ensuring open communication channels between development and production teams by remembering that an ounce of prevention is worth a pound of cure:

- have a list of candidate predictor variables for the research project;
- find out which variables are available from the historical dataset and which are not;
 - if a variable has been consistently available throughout history, find out whether its meaning has changed;
 - if a variable has appeared only recently, find out how it can be synthesized from past data. Ensure that the way you are replicating the new variable from the data warehouse is consistent with the way it is currently being generated. It will save you a lot of time and headaches.
- ensure that the test data set can be easily replicated by the data warehouse team;

- if an easy, one-to-one mapping between your dataset and theirs is hard to achieve, change your dataset, if possible;
- if your dataset must be constructed in a specific way, get the data warehouse team started on matching your data extract as early as possible.

An application can be productionalized efficiently not only through writing correct, clean and efficient code but also through carrying out as many testing and data reconciliation iterations as possible within a limited time frame. This can be achieved by following the general guidelines below:

- 1. develop unit test framework whenever possible;
- 2. fix and freeze the input data for reconciliation testing to ensure reproducible test results;
 - (a) hard-code seeds for the code dependent on random number generators;
 - (b) take a snapshot of the input data at a point in the past and use it for subsequent calculations at least until the current round of testing is finished;
- 3. rank all differences between the old and new results in descending order and
- 4. drill down into the "worst offenders" until a satisfactory explanation of the differences can be found and an acceptable level of accuracy can be achieved.

Appendix A Additional tools for data analysis

A.1 Comparing two datasets

Like a home inspector in the world of real estate, a data scientist employed in the area of care standardization has no friends among physicians. In order to avoid being hit from behind by a baseball bat on their way to the car after a long day at the office, he or she must ensure that potentially damning conclusions they reached during the course of the said long day are statistically sound. Here is how:

- i identify potential outliers;
- ii attempt to explain and clean out spurious outliers, e.g., convert dates formed using two-digit years to proper YYYY dates;
- iii remove remaining outliers if you must or incorporate them into your dataset;
- iv backfill missing data;
- v identify and prune datasets that are not statistically significantly different from each other, e.g., physicians' pharmacy charges where the hypothesis about the two providers charging substantially identical amounts cannot be rejected at the 5% level.

There are several tests for determining whether the difference between two or more data sets can be viewed as statistically significant [35]. A summary ([17], parts reproduced by permission from Professor James D. Leeper) is presented in Table A.1.

Number	Number of	Independent	Dependent variable	Test	R code example
of	independent	variable type	type		
lepen-	variables				
lent					
vari-					
ables					
			normal	one-sample t-test	t.test(x,)
			(continuous)		
			ordinal variable or	one-sample median	median(x,)
	0 (one	anv	interval variable		
	population)	any	indicator variable	binomial test	binom.test(n,
					ntr, p, alt="gr")
			categorical variable	chi-square	chisq.test(x,)
_				goodness-of-fit	
			normal	two independent	t.test(x, y,)
	1		(continuous)	sample t-test	
	(independent	indicator	ordinal variable or	Wilcoxon-Mann-	<pre>wilcox.test(x, y,)</pre>
	groups)	variable	interval variable	Whitney test	
	groups)		categorical variable	Chi-square test	chisq.test(x,)
				Fisher's exact test	fisher.test(x,)
1			normal	one-way ANOVA	aov(x, y,)
1	1		(continuous)		
	(independent	categorical	ordinal variable or	Kruskal-Wallis test	<pre>kruskal.test((x, y,)</pre>
	(independent	variable	interval variable		

Table A.1: Statistical tests used to confirm the statistical significance of difference between data sets; parts reproduced from [17] by permission from Professor James D. Leeper

Continued on next page

		a 1	e		
Table A L	_	Continued	trom	previous	naae
10010 11.1		contentaca	110110	proceeduo	page

Number	Number of	Independent	Dependent variable	Test	R code example
of	independent	variable type	type		
depen-	variables				
dent					
vari-					
ables					
			categorical variable	chi-square test	chisq.test(x,)
			normal	paired t-test	<pre>t.test(x, y, paired=T)</pre>
	1 (dependent		(continuous)		
	/ matched	interval	ordinal variable or	Wilcoxon signed ranks	<pre>wilcox.test(x, y, paired=T)</pre>
	/ matched	variable	interval variable	test	
	groups)		categorical variable	McNemar test	<pre>mcnemar.test(x,)</pre>
	1 (dependent / matched groups)	categorical variable	normal	one-way repeated	<pre>car::Anova(model,)</pre>
			(continuous)	measure ANOVA	
			ordinal variable or	Friedman test	<pre>friedman.test(y, groups,</pre>
			interval variable		blocks,)
1			categorical variable	repeated measures	glmer(x,)
1				logistic regression	
			normal	factorial ANOVA	aov(model,)
	2+	categorical variable	(continuous)		
	(independent		ordinal variable or	ordered logistic	MASS::polr(model,)
	(independent		interval variable	regression	
	groups)		categorical variable	factorial logistic	glm(x,)
				regression	
			normal	correlation	<pre>cor(x,y, method="pearson",)</pre>
			(continuous)	simple linear regression	lm(model,)
	1	continuous			Continued on next page

©2016 NorthShore	
University	
HealthSystem	

Table A.1 – Continued from previous page

Number	Number of	Independent	Dependent variable	Test	R code example
of	independent	variable type	type		
depen-	variables				
dent					
vari-					
ables					
ants			ordinal variable or	non-parametric	<pre>cor(x,y method="spearman",</pre>
			interval variable	correlation:) or
				Spearman's ρ or	<pre>cor(x,y, method="kendall",</pre>
				Kendall's τ)
			categorical variable	simple logistic	glm(x,)
				regression	
	1+ continuous	continuous	normal	multiple regression	<pre>lm(model,)</pre>
	and/or $1+$	and/or	(continuous)	analysis of covariance	aov(model,)
	categorical	categorical	astoronical remisble	multiple regression	lm(model,)
	variable	variable	categorical variable	discriminant analysis	MASS:lda(model,) or
					MASS:qda(model,)
	1	categorical	normal	one-way MANOVA	<pre>manova(model,)</pre>
	1	variable	(continuous)		
21	2	0.001	normal	multivariate multiple	cor(x,)
27	2+	any	(continuous)	linear regression	
	0	0.001	normal	factor analysis	cor(x,)
	0	any	(continuous)		
2+	0	any	normal	Pearson correlation	cor(x,)
sets of			(continuous)		
2+					

108
A.1.1 Testing proportions

A question often arises in the course of comparing results of medical treatments, "Are the differences in proportions of outcomes of interest observed in different populations due to chance?" A variation on the same theme is, "Is the difference between the hypothesized and observed proportions of outcomes of interest due to chance?"

In the most general case, sources (e.g., [22]) recommend using the **pooled two-proportion** *z*-test for ascertaining that the difference in percentages of positive outcomes between two samples is *not* due to chance. It proceeds as follows:

- i formulate the null hypothesis: $H_0: p_1 = p_2$, where $p_i, i = 1, 2$ is the *i*-th proportion of outcomes of interest;
- ii calculate proportions of outcomes of interest in each sample: \hat{p}_1 and \hat{p}_2 ;
- iii calculate the total combined (pooled) proportion of outcomes of interest: $\hat{p} = \frac{n_{p_1} + n_{p_2}}{n_1 + n_2}$, where n_{p_i} , i = 1, 2 is the number of positive outcomes in the *i*-th sample, n_i , i = 1, 2 is the number of observations in the *i*-th sample;
- iv calculate the standard error of the estimated difference $\hat{p_1} \hat{p_2}$:

$$SE = \sqrt{\hat{p}\left(1-\hat{p}\right)\left(\frac{1}{n_1}+\frac{1}{n_2}\right)};$$

- v calculate the z-statistic: $z = \frac{\hat{p_1} \hat{p_2}}{SE}$
- vi calculate the p-value for the z-statistic;
- vii if the *p*-value is lower than the chosen threshold (e.g., 5%), reject H_0 , i.e., assume that the samples come from different distributions, otherwise accept it, i.e., assume that the samples came from the same distribution.

This test is generally applicable when the samples are no bigger than 10% of the total population and the numbers of successes and failures exceed 5.

Arguments can be made in favor of using an unpooled statistic since the variances of two samples do not have to be the same (see, e.g., [31]). In this case, the null hypothesis is $H_{0_{unpooled}}: p_1 - p_2 = d_0$, where d_0 is hypothesized difference between the two distributions, and the standard error estimate is

$$SE_{unpooled} = \sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n_1} + \frac{\hat{p_2}(1-\hat{p_2})}{n_2}}$$

©2016 NorthShore University HealthSystem

and the corresponding z-statistic is $\frac{\hat{p_1} - \hat{p_2} - d_0}{SE_{unpooled}}$. While there are finer points in arguing for the use of the unpooled test, for most practical cases the samples are assumed to come from the same distribution and the use of the pooled test is justified.

Let us consider a worked example based on the prevalence of blood transfusions in two hospitals (pavilions)¹ for the two-year period between May 1, 2012 and May 1, 2014 as presented in Table A.2.

Pavilion	# of patients	# of transfusions
Pavilion A	5,000	250
Pavilion B	3,000	200

Table A.2: Sample blood transfusion statistics for Q2 FY2014.

Applying our (pooled) algorithm, we get:

$$\begin{array}{rcl} n_1 &=& 5,000 \;, \\ n_2 &=& 3,000 \;, \\ n_{p_1} &=& 700 \;, \\ n_{p_2} &=& 200 \;, \\ \hat{p_1} &=& 0.14 \;, \\ \hat{p_2} &=& 0.0667 \;, \\ \hat{p_1} - \hat{p_2} &=& 0.0733 \;, \\ \hat{p} &=& \frac{700 + 200}{5,000 + 3,000} = 0.1125 \;, \\ SE &=& \sqrt{0.1125(1 - 0.1125)\left(\frac{1}{700} + \frac{1}{200}\right)} = 0.028 \;, \\ z &=& \frac{0.0733}{0.028} = 2.64 \\ - value &=& 2\Phi(z) = 2 \times 0.0042 = 0.0084 \;, \end{array}$$

where $\Phi(z)$ is the standard normal cumulative distribution function and the coefficient 2 comes from the two-tailed test.

Given the data in the example and the assumptions made in Section 3, the null hypothesis H_0 that the difference in proportions of patients receiving blood transfusions between pavilions A and B are highly statistically

©2016 NorthShore University HealthSystem

p

 $^{^1\}mathrm{We}$ will be using the terms "pavilion" and "hospital" interchangeably throughout this document.

significant (at higher than 99% significance level). We must therefore reject the null hypothesis H_0 and adopt the alternative H_A , i.e., assume that those proportions come from different distributions.

Appendix B Sequence of steps for developing a logistic regression model in R

Table B.1 outlines the steps to develop a logistic regression model for predicting outcomes of interest or classifying objects and events.

Action	Section	Code example	Result
	refer-		
	ence		
Retrieve data from an	App.	COPDadmRaw <- read.csv(paste(dataDir,	raw input data
outside source (database,	C, D	"COPD_ALL_ALIVE.csv", sep=""))	
file or website) into a data		con <- odbcConnect("Oracle", uid="user",	
frame		pwd="passwd")	
		elixTrainRaw <- sqlQuery(con, "SELECT *	
		FROM DATATABLE")	
Identify output variable(s)	App.	outcomes <- c("DEATH_365_DAYS")	output variable column
	C, D		names in the main data
Convert NA to 0 where appropriate	3.5	$adm[, NAzCol] \le adm[, NAzCol],$ function(x) ifelse(is.na(x), 0, x))	frame imputed sparse indicator variables
Identify indicator columns	App.	indCol <- grep("TOTAL", grep(indicator variable column
	C, D	"_IND _PRESCRIBED _GT", names(adm), value=T), invert=T, value=T)	names in the main data frame
Separate the data into the	3.2	testRows <- createDataPartition(adm[,	training and testing data
training and testing		statusCol], p=testFrac, list=F)	frames
dataset (create cross-validation sets if			
necessary)			
Remove columns with	3.2	dataSet < rem.sparse.col(adm, trainRows,	training and testing
sparse data (> 20% missing		rcntCol, 0.2)	datasets without sparse
from the training dataset)		, , ,	variables
	I	1	Continued on next page

 Table B.1: An algorithm for developing a logistic regression-based prediction or classification model

		Table B.1 – 6	Continued from previous page
Action	Section	Code reference	Result
	refer-		
	ence		
Remove single-valued (in	App.	dataTrain <- rem.single.val.col(training and testing
the training dataset)	C, D	dataSet[trainRows,])	datasets without
indicator columns Aggregate categorical variables as needed	3.7.2	ethnicitySummary <- multi.category.stats(dataTrain, "RACE_ETHNICITY", outcomes, sensThreshold, "Caucasian", "Other", c("0", "1"))	uninformative variables categorical predictive variables aggregated into groups with smoothed population distribution
Compute univariate odds ratios	3.7.2	uniOddsRatio <- odds.ratio.save(dataTrain, outcomes, indCol, idCol, addList=list(eTs, mSt), oRdir=interimDir)	univariate odds ratios and their statistics for all predictive variables; intermediate files for
Compute multivariate odds ratios	3.7.3	coefOut <- odds.ratio.stat(linearModel, uniOddsRatio, sigLev)	indicator, numeric and combined indicator and numeric predictive variables saved separately multivariate odds ratios and their statistics for all predictive variables; intermediate files for predictive variables saved <i>Continued on next page</i>

Action	Section	Code reference	Result
	refer-		
	ence		
Remove predictive	3.3	indSignif <- na.omit(predictive variables whose
variables whose odds ratio		uniOddsRatio[uniOddsRatioValidity == '*',	odds ratios are likely to
are statistically		"Variable"])	differ from 1
significantly different from			
Compute correlation	3.3	hiCorTab < output.corr(dataTrain, indCol,	correlation matrices for
matrices		dir=interimDir, timeStamp=timeStamp,	predictive variables;
		corrPlotDir=graphDir)	intermediate files and
			correlation level plots saved
Remove highly correlated	3.7.1	exclCol <- c(numerical stable normal
predictive variables		"COMPLICATED_HYPERTENSION",	equation (3.10)
$(r \ge 0.6)$		"UNCOMPLICATED_DIABETES")	
Restore predictive	3.3	inclCol <- c(outcomes[outInd]),	correlation matrices for
variables that should be		indSignif[indSignif %in% colnames(dataSet)]	predictive variables;
included from the business			intermediate files and
standpoint			correlation level plots saved
Train the generalized lineal	3.2, 3.3	fullModel < glm.test(dataFact, statusCol,	logistic regression model
model (GLM) on the	3.7.4	testRows, threshold, trace=trace,	created; model coefficients
training dataset and run it		maxit=maxit, text=testText,	and their statistics saved
on the test dataset		varJoiner=varJoiner, plotFile=plotTestFile,	
Generate ROC curves	3.12.1	res <- auc.perf(glmFit, testLm, testStatus,	ROC curve plots generated
		type=type,)	and saved
			Continued on next page

Table B.1 – Continued from previous page

		Table B.1 – \mathbf{C}	Continued from previous page
Action	Section	Code reference	Result
	refer-		
	ence		
Generate PPV / sensitivity	3.12.1	$allRisk \leftarrow ppv.sens.risk(dataSet, prSort,$	PPV / Sensitivity curve
curves		scenario, baseText, graphDir=graphDir,	plots generated and saved
		resultDir=resultDir, timeStamp=timeStamp)	
Generate lift tables	3.11,	lift.table.save(prSort, nrow(dataSet), rep(Lift tables saved
	3.12.1	today, nrow(elix)), today, allRisk, c(0.01,	
		1e3 / length(testRows), 0.05, 0.1, 0.2, 0.3, 0.5,	
		1), resultDir=resultDir,	
		timeStamp=timeStamp)	
If performance metrics	3.10,		final model available for
satisfy initial model	3.10.3		production
specifications, submit the			
model for further			
validation and			
productionalization			

Appendix C Sample code used to process the running COPD example

In the listing below, the formatting is different from that of the actual code due to a different line length in the typeset font. User-defined packages textttNS.CA.statUtils, NS.CA.dataUtils, NS.CA.dateUtils, NS.CA.modelUtils, NS.CA.plotUtils and NS.CA.mathUtils are defined in Appendix E.

```
### Daniel Chertok
### (C) 2014 NorthShore University HealthSystem
#### All rights reserved
\mathbf{rm}(\mathbf{list} = \mathbf{ls}())
library (debug)
library (reshape2)
library(date)
library(stringr)
library(plyr)
library (glmnet)
library (MASS)
library (scales)
library(lubridate)
library (NS.CA. statUtils)
library (NS.CA. dataUtils)
library (NS.CA. dateUtils)
library (NS.CA. modelUtils)
library (NS.CA. plotUtils)
library (NS.CA. mathUtils)
SPARSE_MIN < - 0.2
yearCsvName <- function( dataDir, name, year ) {</pre>
  paste(dataDir, name, year, ".csv", sep="")
}
# main module
```

```
years <- 2010:2014
today <- as. Date("2014-01-01")
dataDir <- "../Data/"
resultDir <- "../Results/"
graphDir <- paste( resultDir , "Graphs", sep="")
interimDir <- paste( resultDir , "Interim/", sep="" )</pre>
timeStamp <- timestamp.from.date()</pre>
\# read the input file
COPDadmRaw <- read.csv( paste(dataDir, "COPD_ALL_ALIVE
   .csv", sep="") )
outcomes <- c(
  "INP_OBS_COPD_ADM_365_DAYS",
  "DEATH_365D_IND"
\# all dates will be used later
keyDates <- sort(unique(as.Date(COPDadmRaw], "AS_OF_
  DATE"])))
\# for analysis, use data up to today only
COPDadmRaw <- transform ( COPDadmRaw, AS_OF_DATE=as.
   Date(AS_OF_DATE))
COPDadm <- subset ( COPDadmRaw, AS_OF_DATE < today )
# columns irrelevant to the analysis
excludeCol <- c("PAT_ID", "TEN_YR_RISK_PCT", outcomes
   [[2]])
# columns where NAs can be turne into 0s
NAzero <- c("IND", "PRESCRIBED", "VISIT", "DAYS", "NUM
   ")
NAzeroCol <- unique( Reduce( c, sapply( NAzero, grep,
   colnames(COPDadm))))
```

```
COPDadm[, NAzeroCol] <- sapply(COPDadm[, NAzeroCol],
   function(x) if else(is.na(x), 0, x) )
# independent of train / test breakdown
COPDadm <-
   transform (COPDadm,
              EJFR_IND=ifelse(EJFR_NUM > 0, 1, 0),
              FEMALE_IND=
                  ifelse ( GENDER\_CODE="F", 1, 0 ),
              HOSP_365_DAYS_COPD_IND=
                  ifelse ( NUM_HOSP_365 \_DAYS_COPD > 0,
                     1, 0),
              ER_VISITS_365_DAYS_COPD_IND=
                  ifelse( NUM_ER_VISITS_365_DAYS_COPD >
                      0, 1, 0)
COPDadm [ is . na (COPDadm $MARITAL_STATUS) , "MARITAL_STATUS"
   ] <- "Unknown"
COPDadm [ is . na (COPDadm $RACE_ETHNICITY) , "RACE_ETHNICITY"
   ] <- NS.CA.mode(COPDadm RACE_ETHNICITY)
ftpPts <- na.to.colMeans(data.frame(ftp=COPDadm$FRAM_
   TOTAL_POINTS))
COPDadm $FRAM_TOTAL_POINTS <- ft p P ts $FTP
# indicator columns
indCol <- grep ( "TOTAL", grep ("_IND | _PRESCRIBED | _GT",
   names(COPDadm), value=T), invert=T, value=T)
statusCol <- which(colnames(COPDadm) %in% outcomes</pre>
   [[1]]
\# set up models
\# set.seed(1)
testFrac <- 0.2
tRows <- createDataPartition( COPDadm[, statusCol], p=
   testFrac, list=F )
```

```
\# train on all training dataset patients, test on MG
   patients only
mgRows <- which ( COPDadm [, "MG_PCP_24M_SEEN_IND" ] == 1
tMgRows <- tRows [tRows %in% mgRows]
nMgRows <- length ( tMgRows )
COPDadm < - COPDadm[, ! names(COPDadm) \%in\% excludeCol]
dsfTestRows <- tMgRows
threshold <- 0.05
oma < - \mathbf{c}(0, 0, 3, 0)
period \leq - years(1)
\# set up test dates
fwdTestDates <- forward.test.dates( keyDates, today,</pre>
   period )
backTestDates <- backward.test.dates( keyDates, today,</pre>
    period )
midTestDates <- mid.test.dates( keyDates, today,
   period )
baseText <- paste( "COPD_model_validation_for_dates_</pre>
   between", years [1], "and", years [length(years)])
testModel <- list(
  Full=
  list ( Model=glm.test ,
        ModelRowArg=dsfTestRows,
        TestRows=dsfTestRows,
        Text =
            paste( baseText, ", _\n_test =",
                   testFrac, "of_total",
                   "sensitivity_threshold_(%_of_
                       population", "flagged) \_=",
                   threshold ) ),
\# set up filter arguments
```

```
\operatorname{rcnt} <- \mathbf{c}("\_MR", "WEIGHT")
rcntCol <- unique( Reduce( c, sapply( rcnt, grep,</pre>
   colnames(COPDadm) ) )
minCor <- 0.6
sensThreshold <-0.01
signLev <- 0.95
\# run the test program
scenario <- "Full"
testRows <- testModel [[scenario]] [["TestRows"]]
\# use train set only
trainRows <- rownames( COPDadm[-testRows, ] )</pre>
# remove or backfill sparse columns
pctNA <- percent.NA.col( COPDadm[trainRows, rcntCol] )</pre>
# usable sparse columns
rareCol <- names( pctNA [pctNA <= SPARSE_MIN] )
if (length(rareCol) > 0) {
  rareData <- na.to.colMeans(COPDadm[, rareCol])</pre>
  COPDadm[, rareCol] <- rareData
}
\# data too sparse to use
sparseCol <- names( pctNA [pctNA > SPARSE_MIN] )
dataSet <- COPDadm[, ! colnames(COPDadm) %in%
   sparseCol]
# eliminate indicators with only one value
singleValCol <- which( sapply( dataSet[trainRows, ],</pre>
   function(c) length(unique(c))) \langle = 1 \rangle
```

```
dataSet <- dataSet[, -singleValCol]</pre>
indCol <- indCol[indCol %in% colnames(dataSet)]
\# indicator odds ratios
oRi <- odds.ratio.matrix(dataSet[trainRows, ], dataSet
   [trainRows, outcomes [[1]]], indCol, level=signLevel
   )
rnORbase <- rownames(oRi)
posCountMap <- rep(1, length(rnORbase))
names(posCountMap) <- rnORbase
posStat <- pos.stat( dataSet[trainRows, ], names(</pre>
   posCountMap), outcomes [[1]], posCountMap)
oddsRatioInd <- merge( oRi, posStat, by="row.names",
   all.x=T, rownames=T)
rownames(oddsRatioInd) <- oddsRatioInd$Row.names
outputCol <- c("IndPosCount", "IndPosPct", "
   IndPosOutcomePct", "Odds.Ratio", "CI.Lower", "CI.
Upper", "Pr...z..", "Validity")
total <- data.frame(lapply(outputCol, function(c) NA))
colnames(total) <- outputCol
total <-
   mutate( total,
           Row.names="TOTAL",
           IndPosCount=nrow(dataSet[trainRows, ]),
           IndPosOutcomePct=
               nrow( dataSet [trainRows, ]
                  [dataSet[trainRows, outcomes
                     [[1]] = = 1, ] ) /
                  nrow(dataSet[trainRows, ]) )
oRind <- rbind(oddsRatioInd[, c("Row.names", outputCol
   )], total)
colnames(oRind) [colnames(oRind) == "Row.names"] <- "
   Variable"
write.csv( oRind, paste(interimDir, "OR_", timeStamp,
   ". csv", sep=""), row.names=F)
```

```
indSignif <- na.omit(oRind[oRind$Validity = '*', "
   Variable"])
# numeric odds ratio
nc <- colnames(dataSet[, !colnames(dataSet) \%in\% c(
   indCol, "PAT_MRN_ID", outcomes [[1]])])
numCol <- nc[sapply( dataSet[, nc], is.numeric )]
oddsRatioNum <-
   odds.ratio.num( dataSet[trainRows, ],
                    dataSet[trainRows, outcomes[[1]]],
                   numCol,
                    level=signLev )
# combined univariate ratio
uniOutCol <- c("Row.names", "Odds.Ratio", "Pr...z.",
    "CI.Lower", "CI.Upper", "Validity" )
oRn <- transform( oddsRatioNum, Row.names=rownames(
   oddsRatioNum) )
\# univariate ethnicity
ethnicitySummary <-
  multi.category.stats( dataSet[trainRows, ],
                         "RACE_ETHNICITY",
                         outcomes [[1]],
                         sensThreshold,
                         "Caucasian",
                         "Other",
                         \mathbf{c}("0", "1"))
write.csv( ethnicitySummary, paste( interimDir, "
   Ethnicity_", timeStamp, ".csv", sep=""), row.names
   =F)
levels(dataSet$RACE_ETHNICITY) <- c(levels(dataSet$</pre>
   RACE_ETHNICITY), "AfroEuroAsian")
dataSet [! dataSet $RACE_ETHNICITY %in% c("Asian","
   African _American", "Caucasian"), "RACE_ETHNICITY"]
```

O2016NorthShore University HealthSystem

<- "Other" dataSet [dataSet \$RACE_ETHNICITY % in% c("Asian"," African $_American"$, "Caucasian") , "RACE_ETHNICITY"] <- " AfroEuroAsian" # marital status maritalStatus <- multi.category.stats(dataSet[trainRows,], "MARITAL_STATUS", outcomes [[1]], sensThreshold, "Married", "Unknown", c("1", "0")) write.csv(maritalStatus, paste(interimDir, " MaritalStatus_", timeStamp, ".csv", sep=""), row. names=F) levels(dataSet\$MARITAL_STATUS) <- c(levels(dataSet\$</pre> MARITAL_STATUS), "NotWidowed", "Other") dataSet [! dataSet \$MARITAL_STATUS % in% c("Married"," Widowed"), "MARITAL_STATUS"] <- "Other" dataSet [dataSet \$MARITAL_STATUS % in% c("Married", "Other "), "MARITAL_STATUS"] <- "NotWidowed" eTs <- transform(subset(ethnicitySummary, ! RACE_ ETHNICITY % in% c("TOTAL", "Caucasian")), Row.names=paste(RACE_ETHNICITY, ":_Caucasian")) mSt <- transform (subset (maritalStatus , ! MARITAL_ STATUS $\%in\%~c\,($ "TOTAL", "Married")), Row.names= paste(MARITAL_STATUS, ":_Married")) uniOddRatio <- rbind(oddsRatioInd[, uniOutCol], oRn[, uniOutCol], eTs[, uniOutCol], mSt[, uniOutCol]) **colnames**(uniOddRatio) [**colnames**(uniOddRatio) = "Row. names"] <- "Variable" write.csv(uniOddRatio, paste(interimDir, "UniOR_", timeStamp, ".csv", sep=""), row.names=F) cDs <- colnames(dataSet) hiCorPriorNum <- high.corr(dataSet[trainRows, sort(cDs[which(!cDs %in% indCol)])], minCor, " Numerical_factor_correlation_matrix")

```
write.csv( hiCorPriorNum, paste( interimDir, "CorVar_
   Prior_", timeStamp, ".csv", sep=""), row.names=F )
hiCorNumDf <- high.corr.df( hiCorPriorNum, minCor )
write.csv( hiCorNumDf, paste( interimDir, "CorVar_
   PriorTable_", timeStamp, ".csv", sep=""), row.
   names=F)
hiCorPriorInd <- high.corr( dataSet[trainRows, sort(
   indCol)], minCor, "Indicator_correlation_matrix",
   scaleArg=list(cex=0.75))
write.csv( hiCorPriorInd , paste( interimDir , "
   CorVarInd_", timeStamp, ".csv", sep=""), row.names
   =F)
hiCorIndDf <- high.corr.df( hiCorPriorInd, minCor )
write.csv( hiCorIndDf, paste( interimDir, "CorVar_
   PriorIndTable_", timeStamp, ".csv", sep=""), row.
   names=F)
indSignif <- indSignif [!indSignif %in% hiCorIndDf$var2
   exclCol <- c(
  "MG_PCP_18M_SEEN_IND"
   "LOOPDIURETIC_PRESCRIBED"
   "NOT_PRN_MED_TOTAL_PRESCRIBED"
   "DAYS_SINCE_LAST_EF"
   "DISCHARGED_DISP_31_365_DAYS"
    "NUM_HOSP_31_365_DAYS_COPD"
   "NUM_ER_VISITS_31_365_DAYS_COPD"
   "NUM_HOSP_31_365_DAYS_PNEU"
   "NUM_ER_VISITS_31_365_DAYS_PNEU"
    "TOTAL_LOS_HOSP_DAYS_LST_12_MO"
   "NUM_HOSP_365_DAYS_COPD"
    "NUM_ER_VISITS_365_DAYS_COPD"
   "EJFR_NUM"
inclCol <- c(c(
 "PAT_AGE_YRS",
  "CARDO_24MM_VISIT"
  "PULMO_24MM_VISIT",
  "HOSP_30D_VISIT",
```

```
"NUM_HOSP_365_DAYS_COPD",
  "NUM_ER_VISITS_365_DAYS_COPD",
  "NUM_ER_VISITS_365_DAYS_PNEU",
  "HOSP_12M_VISIT",
  "NUM_UNIQUE_SPECIALTIES",
  outcomes [[1]],
 numCol, indCol
 )
factorCol <- unique( subset( inclCol, ! inclCol %in%
   exclCol ) )
hiCor <- high.corr( dataSet[trainRows, sort( factorCol
    )], minCor, "Factor_correlation_matrix", scaleArg=
   c(cex=0.6)
if (Reduce('*', \dim(hiCor)) > 0) {
  hiCorIndDf <- high.corr.df( hiCor, minCor )</pre>
}
train <- dataSet[, factorCol]</pre>
statusCol <- which(colnames(train) %in% outcomes[[1]])</pre>
\# test on the "odds ratio" training dataset
fm <- glm("INP_OBS_COPD_ADM_365_DAYS_~.", train[
   trainRows, ], family='binomial', maxit=100, trace=T)
trainGlm <- auc.perf( fm, train[trainRows, ], train[</pre>
   trainRows, statusCol], type='response', text='
   Training_set_AUC')
\# test on "odds ratio" test dataset selection
fullModel <- glm.test( train, statusCol, testRows,
   threshold, trace=T, maxit=100, text=testModel[[
   scenario]][["Text"]], oma=\mathbf{c}(0,0,3,0), varJoiner='+'
   )
coefOut <- odds.ratio.stat( fullModel$model,
   uniOddRatio, signLev)
write.csv( coefOut, paste( interimDir, "OR_All_",
   timeStamp, ".csv", sep=""), row.names=F)
coefSummary <- coef( summary( fullModel$model ) )
write.csv( coefSummary | order( rownames( coefSummary )
```

```
), ], paste( resultDir, "Coef_All_", timeStamp, ".
   csv", sep=""))
# generate performance statistics
prSort <- perf.clsf.stat( fullModel$perf$predicted ,</pre>
   nrow(COPDadmRaw), train[testRows, outcomes[[1]]]
   )
# plot the PPV / sensitivity graph
g <- ppv.sens.plot( prSort, main=baseText )
print (g)
ggsave( file=paste( "PPV_Sens_", scenario, "_",
   timeStamp, ".pdf", sep=""), path=graphDir, plot=g,
    width=11, height=8.5, units="in")
# two.ord.plot( prSort, main=testModel[/scenario]]//"
   Text "]] )
allRisk <- cbind ( PAT_MRN_ID=dataSet [rownames( prSort ),
   "PAT_MRN_ID"], prSort )
write.csv( allRisk, paste( resultDir, "AllRisk_",
   timeStamp, ".csv", sep=""), row.names=F)
\# do hospitalizations matter?
testNull <- dataSet [testRows, ]
hospLastYr <- which ( testNull$NUM_HOSP_365_DAYS_COPD >
    (0)
hospNextYr \leftarrow which(testNull[, outcomes[[1]]] == 1)
hospLastNextYr <- which ( testNull [ hospLastYr , outcomes
   [[1]] = 1
numHospLastYr <- length( hospLastYr )</pre>
numHospNextYr <- length ( hospNextYr )
numHospLastNextYr <- length( hospLastNextYr )</pre>
totalSize <- nrow( testNull )
nullHyp <- mutate (
     data.frame( Total.Population.Size=nrow( testNull
        ),
```

```
Num. Total. Hosp. Last. Yr=numHospLastYr,
     Num. Hosp. Next. Yr=numHospNextYr,
     Num. Hosp. Last. Next. Yr=numHospLastNextYr,
     Pct.Hosp.COPD.Last.Yr=numHospLastYr / totalSize,
     Pct. Hosp.COPD. Last. Next. Yr=numHospLastNextYr /
        numHospLastYr,
     Pct. Flagged. Hosp. Total=numHospLastNextYr /
        length(hospNextYr)),
     F1=2.0 / ( 1.0 / Pct.Hosp.COPD.Last.Next.Yr +
         1.0 / Pct.Flagged.Hosp.Total ) )
write.csv( nullHyp, paste( interimDir, "NullHyp_",
   timeStamp, ".csv", sep=""), row.names=F )
# lift table −
pctList <- sort( c( 0.01, 0.05, 0.1, 0.2, nullHyp$Pct.
   Hosp.COPD.Last.Yr, 0.3, 0.5, 1 ))
liftTable <- lift.table( prSort, pctList, nrow(</pre>
   dataSet ) )
mostRecent <- which ( COPDadmRaw$AS_OF_DATE == today )
liftTable <- transform( liftTable, Num.Flagged.Most.
   Recent=NS.CA.round( Pct.Total * length( mostRecent
   )))
write.csv( liftTable, paste( interimDir, "Lift_",
   timeStamp, ".csv", sep=""), row.names=F)
# top 5 %
liftThreshold <- 0.05
hiRisk <- head( allRisk , liftThreshold * nrow( prSort
   ))
write.csv( hiRisk, paste( resultDir, "HiRisk_",
   timeStamp, ".csv", sep=""), row.names=F)
# random 100 from top 5\%
write.csv( hiRisk[sample( 1:nrow(hiRisk), 100 ), ],
   paste( resultDir , "HiRiskRand100_", timeStamp, ".
   \operatorname{csv}^{"}, \operatorname{sep}="""), \operatorname{row.names}=F)
```

Listing C.1: Example: R code for COPD logistic regression.

The most recent version of the code in Listing C.1 can be found in COPDadm.R.

Appendix DSample code used to implement the
Cox proportional hazard model in the
heart failure mortality example

In the listing below, the formatting is different from that of the actual code due to a different line length in the typeset font. User-defined packages NS.CA.statUtils, NS.CA.dataUtils, NS.CA.dateUtils, NS.CA.modelUtils, NS.CA.plotUtils and NS.CA.mathUtils are defined in Appendix E.

```
### Daniel Chertok
#### (C) 2014 NorthShore University HealthSystem
### All rights reserved.
\mathbf{rm}(\mathbf{list} = \mathbf{ls}())
library (debug)
library (reshape2)
library(date)
library (stringr)
library(plyr)
library (scales)
library (lubridate)
library (NS.CA. statUtils)
library (NS.CA. dataUtils)
library (NS.CA. dateUtils)
library (NS.CA. modelUtils)
library (NS.CA. plotUtils)
library (NS.CA. mathUtils)
# main module
\# set up constants
```

```
testFrac <- 0.2
threshold <- 0.05
oma <- c(0, 0, 3, 0)
period <- years (1)
minCor <- 0.6
sensThreshold <-0.01
signLev <- 0.95
years <- 2010:2012
today <- as. Date("2013-01-01")
lastDate <- as.Date("2012-01-01")
dataDir <- "../Data/"
resultDir <- "../Results/"
graphDir <- paste( resultDir , "Graphs", sep="" )</pre>
interimDir <- paste( resultDir , "Interim/", sep="" )</pre>
timeStamp <- timestamp.from.date()</pre>
\# read the input file
admRaw <- read.csv( paste(dataDir, "HF_EOL.csv", sep="
   "))
outcomes <- c ( "DEATH_365_DAYS" )
admRaw[, outcomes] <- as.factor( admRaw[, outcomes] )
\# all dates will be used later
keyDates <- sort ( unique ( as.Date ( admRaw$AS_OF_DATE )
    ))
\# for analysis, use data up to today only
admRaw <- transform ( admRaw, AS_OF_DATE=as.Date( AS_OF
   _DATE ) )
adm <- subset ( admRaw, AS_OF_DATE <= lastDate )
\# columns irrelevant to the analysis
excludeCol <- c("PAT_ID")
```

columns where NAs can be turne into 0s NAzero <- c("IND", "PRESCRIBED", "VISIT", "DAYS", "NUM ") NAzeroCol <- unique(Reduce(c, sapply(NAzero, grep, colnames (adm)))) NAzCol <- NAzeroCol [! colnames(adm[, NAzeroCol]) %in % outcomes] adm[, NAzCol] <- sapply(adm[, NAzCol], function(x) ifelse (is .na(x), 0, x <math>))# independent of train / test breakdown ejfrMed <- median(na.omit(admRaw\$EJFR_NUM)) adm <- mutate(adm, EJFR_IND=ifelse(EJFR_NUM > 0, 1, 0), $EJFR_NUM = ifelse(EJFR_NUM > 0, EJFR_NUM)$, ejfrMed), $EJFR_DIF=abs(EJFR_NUM - ejfrMed)$. FEMALE_IND=ifelse (GENDER_CODE="F", 1, (0)adm [is . na (adm\$MARITAL_STATUS) , "MARITAL_STATUS"] <- " Unknown" adm [is . na (adm\$RACE_ETHNICITY), "RACE_ETHNICITY"] <-NS.CA.mode(adm\$RACE_ETHNICITY) # indicator columns indCol <- grep("TOTAL", grep("_IND|_PRESCRIBED|_GT", **names**(adm), value=T), invert=T, value=T) statusCol <- which(colnames(adm) %in% outcomes)</pre> # select random rows for survival idCol <- "PAT_MRN_ID" patRows <- c(rand.surv(adm[adm\$AS_OF_DATE < lastDate ,], idCol, seed=1), $rownames(adm[adm$AS_OF_DATE == lastDate]$, |))

©2016 NorthShore University HealthSystem

adm <- adm [patRows, ! colnames(adm) %in% excludeCol] # set.seed(NULL) # random sampling # set.seed(1) # reproducible results # testRows <- createDataPartition(adm[, statusCol], p</pre> = testFrac, list=F) $\# testRows \leftarrow which(adm AS_OF_DATE < as.Date($ '2011-01-01')) # test 2010-2011 testRows <- which (adm\$AS_OF_DATE == lastDate) # test on MG 2012-01-01 $\# testRows <- which (adm AS_OF_DATE == '2014 - 01 - 01') \#$ test on MG 2014-01-01 # set up filter arguments $\operatorname{rcnt} < - \mathbf{c} ("_MR", "_06_MO", "_12_MO", "_24_MO", "_$ _36_MO", "__48_MO") rcntCol <- unique(Reduce(c, sapply(rcnt, grep,</pre> colnames (adm)))) # use train set only trainRows <- rownames(adm[-testRows,]) # remove or backfill sparse columns dataSet <- rem.sparse.col(adm, trainRows, rcntCol, 0.2) # convert outcomes to numeric dataSet[, outcomes] <**as.numeric**(**levels**(dataSet[, outcomes]))[dataSet [, outcomes]] # eliminate indicators with only one value dataTrain <- rem.single.val.col(dataSet[trainRows,] dataTrainCol <- colnames(dataTrain)</pre>

131

```
dataSet <- dataSet [, dataTrainCol]
indCol <- indCol[indCol %in% dataTrainCol]
\# univariate ethnicity
ethnicitySummary <-
  multi.category.stats( dataTrain, "RACE_ETHNICITY",
     outcomes, sensThreshold,
                         "Caucasian", "Other", \mathbf{c}("0", "
                            1"))
write.csv( ethnicitySummary, paste( interimDir, "
   Ethnicity_", timeStamp,
                                     ".csv", sep=""),
                                         row.names=F)
\# this comes in after the initial analysis
levels(dataSet$RACE_ETHNICITY) <- c(levels(dataSet$</pre>
   RACE_ETHNICITY),
                                      "AfroEuroAsian")
dataSet [! dataSet $RACE_ETHNICITY %in%
          c("Asian", "African_American", "Caucasian"),
             "RACE_ETHNICITY"] <--
  "Other"
dataSet [ dataSet $RACE_ETHNICITY %in%
          c("Asian", "African_American", "Caucasian"),
             "RACE_ETHNICITY"] <--
  "AfroEuroAsian"
# marital status
maritalStatus <-
  multi.category.stats( dataTrain, "MARITAL_STATUS",
     outcomes, sensThreshold,
                         "Married", "Unknown", c("1",
                             "0"))
write.csv( maritalStatus, paste( interimDir, "
   MaritalStatus_", timeStamp,
                                   ".csv", sep=""),
```

row.names=F) levels(dataSet\$MARITAL_STATUS) <- c(levels(dataSet\$</pre> MARITAL_STATUS), "NotWidowed", " Other") dataSet [! dataSet \$MARITAL_STATUS % in% c("Married"," Widowed"), "MARITAL_STATUS"] <- "Other" dataSet [dataSet \$MARITAL_STATUS % in% c("Married"," Other"), "MARITAL_STATUS"] <- "NotWidowed" eTs <- transform(subset(ethnicitySummary, ! RACE_ETHNICITY %in% c(" TOTAL", "Caucasian")), Variable=**paste**(RACE_ETHNICITY, ":_ Caucasian")) mSt <- transform(subset(maritalStatus, ! MARITAL_STATUS %in% c(" TOTAL", "Married")), Variable=**paste**(MARITAL_STATUS, ":_ Married")) uniOddsRatio <- odds.ratio.save(dataTrain, outcomes, indCol, idCol, addList=list (eTs, mSt), oRdir= interimDir) outCol <- which (colnames (dataTrain) %in% outcomes) hiCorTab <- output.corr(dataTrain, indCol, dir= interimDir, timeStamp=timeStamp) indSignif <- na.omit(uniOddsRatio[uniOddsRatio\$ Validity == '*', "Variable"]) indSignif <- indSignif [!indSignif %in% as.character(hiCorTab\$var2)] # manual adjustments to predictive variables 133©2016 NorthShore University HealthSystem

exclCol	<-	c ("ADN_EVER" # correlated variables
			, "BMI06_MO"
			, "BMI12_MO"
			, "WEIGHTMR"
			, "WEIGHT06_MO"
			, "WEIGHT_ $_12$ _MO"
			, "WEIGHT24_MO"
			, "NUM_CARD_SEEN_MOST_LST_24_MO"
			, "VISIT_PRACTICE_NAME"
			, "LDL_ MR "
			, "CREAT06_MO"
			, "DBP06_MO"
			, "SBP06_MO"
			, "NUM_KCC_VISIT"
			, "MR_VISIT_PRIM_SPEC"
			, "NOT_PRN_MED_TOTAL_PRESCRIBED"
			, "PACEMAKER_IND"
			, "VISIT_PHY_MG_IND"
			, "NONINSULIN_DIAB_PRESCRIBED"
			, "CANCER_DX"
			, "CHOL_ MR "
			, "COMBOANTHYP_PRESCRIBED"
			, "DBP12_MO"
			$, "DBP_{}24 MO"$
			, "SBP12_MO"
			, "DISCHARGED_DISP_30_DAYS"
			, "DISCHARGED_DISP_365_DAYS"
			, "EJFR_IND"
			, "EJFR_DIF"
			, "EJFR_NUM"
			, "INSULIN_PRESCRIBED"
			, "MG_ONC_VISIT"
			, "NUM_HOSP_30_DAYS_CHF"
			, "NUM_HOSP_365_DAYS_CHF"
			, "NUM_MISSED_APPTS_365"
			, "ORALVASODILSPERF_PRESCRIBED"
			, "PLATMR"
			, "MR_PHY_ID"

O2016NorthShore University HealthSystem

"ACE_INHIBITOR_PRESCRIBED" "SPIRON_PRESCRIBED" "NUM_HOSP_365_DAYS_ICU" "LOOPDIURETIC_PRESCRIBED" "ASPIRIN_PRESCRIBED" "CARDO_12MM_VISIT" "INP_OBS_HF_365_DAYS" # two look− ahead variables, can't use "INP_OBS_HF_ADM_365_DAYS" *#* latest "ANTICOAG_PRESCRIBED" iteration testing on 2012 "FEMALE_IND" "MI_IND" "PL_DEPR_IND" "METOLAZONE_PRESCRIBED" "THIAZIDEDIUR_PRESCRIBED" "TRIGL__MR" "NUM_HOSP_30_DAYS" #, "NUM_HOSP_365_DAYS" "COPD_IND" "NUM_MISSED_APPTS_3_YRS" "HDL__MR" inclCol <- c(outcomes [[1]] , indSignif [indSignif %in% colnames(dataSet)] "BETA_BLOCKER_PRESCRIBED" , "CSO_EVER" # latest iteration testing on 2012 #, "CARDO_24MM_VISIT" $, "SBP_MR"$) baseText <- paste("HF_EOL_model_validation_for_dates_</pre> between", years [1], "and", years[length(years)]) testText <- paste(baseText, ", _\n_test_=", testFrac,</pre> " of _ total",

```
"sensitivity_threshold_(%_of_
                       population", "flagged) =",
                    threshold )
prSort <- run.glm.model( dataSet, trainRows, testRows,
    inclCol, exclCol,
                          outcomes, uniOddsRatio,
                             length ( patRows ),
                          testText=testText, oRdir=
                             interimDir,
                          coefDir=resultDir, varJoiner=
                             '+', timeStamp=timeStamp )
# plot the PPV / sensitivity graph
scenario <- "Full"
allRisk <- ppv.sens.risk( dataSet, prSort, scenario,
   baseText,
                           graphDir=graphDir, resultDir
                              =resultDir,
                           timeStamp=timeStamp )
\# lift table, top 5% and random 100 from top 5%
lift.table.save( prSort, nrow( dataSet ), admRaw$AS_OF
   _DATE,
                 max( admRaw$AS_OF_DATE ), allRisk ,
                  \mathbf{c}(0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1)
                     ),
                  resultDir=resultDir, timeStamp=
                     timeStamp )
# Cox proportional hazard model
prSortCox <- run.cox.model( dataTrain, dataSet[
   testRows, ], today, inclCol,
                             exclCol, outcomes, coefDir
                                =resultDir,
                             timeStamp=timeStamp )
```

```
baseTextCox <- paste( "HF_EOL_Cox_survival_model_</pre>
   validation_for_dates_between",
                       years [1], "and", years [length(
                          years)])
allRiskCox <- ppv.sens.risk( dataSet, prSortCox,
   scenario, baseTextCox,
                               graphDir=graphDir,
                                  resultDir=resultDir,
                               ppvFile="PPV_Sens_Cox_",
                                  riskFile="AllRisk_Cox_
                                  ",
                               timeStamp=timeStamp
                                                    )
\# lift table, top 5% and random 100 from top 5%
lift.table.save( prSortCox, nrow( dataSet ), admRaw$AS
   _OF_DATE,
                 max( admRaw$AS_OF_DATE ), allRiskCox,
                  \mathbf{c}(0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1)
                     ),
                  resultDir=resultDir , liftFile="Lift_
                     Cox_",
                  riskFile="HiRisk_Cox_", topRiskFile="
                     HiRiskRand_Cox_",
                  timeStamp=timeStamp )
```

Listing D.1: Example: R code for Cox proportional hazard modeling.

The most recent version of the code in Listing D.1 can be found in HF₋-EOL.R.

Appendix E R package manuals

- E.1 Package NS.CA.dataUtils data manipulation
- E.2 Package NS.CA.dateUtils date arithmetic
- E.3 Package NS.CA.mathUtils math functions (re)defined
- E.4 Package NS.CA.modelUtils model performance descriptors and graphics
- E.5 Package NS.CA.plotUtils plotting utilities
- E.6 Package NS.CA.statUtils statistical functions

Package 'NS.CA.dataUtils'

April 12, 2016

Type Package

Title Manipulate, backfill and transform data

Version 3.0

Date 2015-01-28

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description Contains functions for backfilling, transforming and manipulating data for the purposes of predictive analytics.

Depends R (>= 3.0.3)

Imports stringr, dplyr, zoo, NS.CA.statUtils

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

apply.na.omit	2
bind with field	,
	í.
	2
df.to.zoo)
factor.to.numeric	-
group.by.col	-
list.invert	;
list.search	;
map.direct	j
map.invert	j
na.to.col.mode	1
na.to.col.mode.2	1
na.to.colMeans	5
na.to.most.recent	5
na.to.row.mode)
na.to.rowMeans)
NS.CA.dataUtils)
pattern.to.str)
remove.col.by.name	

12

Index

apply.na.omit Apply a function to all values that are not empty, NAs for empty values

Description

Apply a function to all values that are not empty, NAs for empty values

Usage

apply.na.omit(x, i, fn, ...)

Arguments

х	data frame or matrix
i	dimension of application: 1 - rows, 2 columns (see "apply")
fn	function to apply
	parameters passed to fn

Value

A list of resulting function applications

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

bind.with.field Add a field to non-null elements of a data frame

Description

Add a field to non-null elements of a data frame

Usage

```
bind.with.field(x, field, c)
```

Arguments

х	data frame of dates
field	name of the field to add
с	field value(s)

Value

The original data frame with the field added

case.sentence

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

case.sentence String to sentence case (first capital) or from sentence case to lower case

Description

String to sentence case (first capital) or from sentence case to lower case

Usage

```
case.sentence(x, inverse = T)
```

Arguments

х	string to convert
inverse	if TRUE, convert x to sentence case, otherwise, to lower case

Value

original string in sentence or lower case

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

df.to.zoo

Convert a data frame to zoo

Description

Convert a data frame to zoo

Usage

```
df.to.zoo(x, indCol = c("date", "hour"), format = "%F %H", tz = "UTC")
```

Arguments

х	data frame
indCol	time-generating columns of x (defaults to c("date", "hour"))
format	format for converting indCol to time (defaults to "%F %H")
tz	time zone for time (defaults to "UTC")

group.by.col

Value

4

zoo object generated from x

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

factor.to.numeric Convert factor data to numeric

Description

Convert factor data to numeric

Usage

factor.to.numeric(x)

Arguments

x factor data

Value

original factor data converted to numeric

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

group.by.col Group data frame by columns using group_by

Description

Group data frame by columns using group_by

Usage

group.by.col(x, groupCol)

Arguments

х	data frame
groupCol	names of columns of x by which to group

list.invert

Value

original data frame grouped by columns

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

list.invert

Swaps names and values in an isomorphic list

Description

In an isomorphic (1:1, or bijection) list, inverts the relationship turning names into values and values into names

Usage

list.invert(1)

Arguments 1

Value

original list indexed by values with values set to original names

named list

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

list.search Find entries in a list

Description

Finds names of element(s) of a named list element by value

Usage

list.search(l, c)

Arguments

1	named list
с	- value to find in 1

map.invert

Value

names of element(s) of 1 whose values are equal to c

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

map.direct

Hash table (map)

Description

Finds the value in a hash table (map) given by a mapping function corresponding to the given key

Usage

map.direct(key, map, ...)

Arguments

key	key to look for
map	mapping function
	additional parameters passed to map

Value

value in the map corresponding to the supplied key

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

map.invert Key(s) from a map by value

Description

Given a mapping (hash) function, finds keys corresponding to a given value by calling list.invert)

Usage

map.invert(value, mapFn, ...)

©2016 NorthShore University HealthSystem

144
na.to.col.mode

Arguments

value	value to find in the map
mapFn	mapping function
	additional parameters passed to ${\tt mapFn}$

Value

name(s) in the map corresponding to the supplied value

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

na.to.col.mode Replace NA's with column modes

Description

Replace NA's with column modes

Usage

na.to.col.mode(x)

Arguments

х

matrix or data frame containing sparse data; convert x to matrix if it isn't

Value

The original matrix or data frame with NA's filled

na.to.col.mode.2 Replace NA's with column modes (corrected na.to.col.mode)

Description

Replace NA's with column modes (corrected na.to.col.mode)

Usage

```
na.to.col.mode.2(x, fn = function(c) max(c, na.rm = T), ...)
```

Arguments

х	matrix or data frame containing sparse data; convert x to matrix if it isn't
fn	tiebreaker function in case of multimodality (defaults to max(c, na.rm=T))
	additional parameters passed to fn

Value

The original matrix or data frame with NA's filled

na.to.colMeans Replace NA's with column means

Description

Replace NA's with column means

Usage

na.to.colMeans(x)

Arguments

х

matrix or data frame containing sparse data; convert x to matrix if it isn't

Value

The original matrix or data frame with NA's filled

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

na.to.most.recent Replace NA's with the most recent data from prior months

Description

Replace NA's with the most recent data from prior months

Usage

na.to.most.recent(x, valid, timeStr, mrStr = "...MR", funMR = function(y) {
 y })

Arguments

х	matrix or data frame containing sparse data
valid	valid numerical time points in field names
timeStr	time string pattern in field names identifying time intervals (e.g., "\.Mo\$")
mrStr	appended to newly created field names to indicate most recent data
funMR	function to use for postprocessing the the data (e.g., replacing NA's; defaults to identity function)

©2016 NorthShore University HealthSystem

na.to.row.mode

Value

The original matrix or data frame with "most recent" columns added

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

na.to.row.mode Replace NA's with row modes

Description

Replace NA's with row modes

Usage

na.to.row.mode(x)

Arguments

х

matrix or data frame containing sparse data; convert x to matrix if it isn't

Value

The original matrix or data frame with NA's filled

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

na.to.rowMeans

Replace NA's with row means

Description

Replace NA's with row means

Usage

```
na.to.rowMeans(x)
```

Arguments

х

matrix or data frame containing sparse data; convert x to matrix if it isn't

Value

10

The original matrix or data frame with NA's filled

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.dataUtils NS.CA.dataUtils.

Description

Data manipulation, transformation and imputation

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

pattern.to.str Replace a pattern with a string

Description

Replace a pattern with a string

Usage

```
pattern.to.str(x, pattern, str)
```

Arguments

х	matrix or data frame containing sparse data
pattern	what to replace
str	replacement

Value

The original with pattern changed to str

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

remove.col.by.name

remove.col.by.name Remove column(s) by name or number or matrix

Description

Remove column(s) by name or number or matrix

Usage

```
remove.col.by.name(lx, field, isStr)
```

Arguments

lx	list of data frames or matrices
field	- name of the field to add
isStr	(logical) is this a column name?

Value

original (list of) data frame(s) with the field(s) removed

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

apply.na.omit, 2

bind.with.field, 2

case.sentence, 3

df.to.zoo,3

factor.to.numeric,4

group.by.col,4
group_by,4

list.invert, 5, 6
list.search, 5

map.direct,6
map.invert,6

pattern.to.str, 10

remove.col.by.name, 11

Package 'NS.CA.dateUtils'

April 12, 2016

Type Package

Title Date manipulation and arithmetic

Version 5.0

Date 2015-01-28

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description

Contains functions for manipulating and analyzing dates for the purposes of predictive analytics.

Depends R (>= 3.0.3)

Imports timeDate, lubridate, NS.CA.dataUtils

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

lete have a	2
date.nr.seq	2
date.ind	3
date.to.POSIXct	3
days.in.year.Date	4
dec.to.hr.str	5
dow.map	5
first.date	6
first.valid.date	6
hours	7
hours24	7
mark.add	8
mark.from.date	8
mark.from.date.hr	9
mark.from.day.hr	9
mark.hr	0
NS.CA.dateUtils	0
random.date	1
season.calendar.map	1

date.hr.seq

	16
yy.to.yyyy	. 14
year.frac.Date	. 14
weekdays	. 13
timestamp.from.date	. 13
season.subset	. 12
season.from.month	. 12

Index

date.hr.seq Date and hour time marks

Description

Generates an ordered sequence of dates and corresponding time marks

Usage

```
date.hr.seq(dateFrom, dateTo, seqFn = hours24, colNames = c("date", "hour"),
...)
```

Arguments

dateFrom	start date of the sequence
dateTo	end date of the sequence
seqFn	function generating daily time marks (defaults to hours. 24)
colNames	column names of the resulting data frame (defaults to c($"date", "hour"$))
	further arguments passed to seqFn

Value

Returns a data frame with dates as the first column and subday time marks as subsequent columns ordered right to left (e.g., by hour, then by date)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

date.ind

date.ind

Description

Appends the following columns to a data frame containing a date:

day of the week
day of the year
month
hour
year
date index in sequence
ISO date (YYYY-MM-DD)

Usage

date.ind(x, col)

Arguments

х	data frame containing a date column
col	date column in x

Value

Returns the original data frame with date element columns appended

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

date.to.POSIXct convert Date to POSIXct

Description

```
convert Date to POSIXct
```

Usage

```
date.to.POSIXct(d, format = "%F", tz = "UTC")
```

Arguments

d	Date
format	format of d (defaults to "%F")
tz	time zone (defaults to "UTC")

Value

Returns a POSIXct object

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

days.in.year.Date Calculate the # of days in a given year forward or backward

Description

Calculate the # of days in a given year forward or backward

Usage

```
days.in.year.Date(dt, direction = 1)
```

Arguments

dt	current date
direction	count forward (>0) or backward(<0)

Value

(integer) # of days in the year

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

dec.to.hr.str

dec.to.hr.str Decimal timestamp to a string containing hours, minutes and seconds

Description

Converts a decimal date in the form YYYYMMDD.hhmmss to a string in the form of "hh hr(s) mm min ss sec" % f(x) = 0

Usage

dec.to.hr.str(x)

Arguments

х

timestamp in decimal form

Value

Returns a string in the form of "hh hr(s) mm min ss sec"

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

dow.map

Day-of-the week map

Description

Generates a map of days of the week to their three-letter names

Usage

dow.map()

Value

Returns a map in the form of "3-letter day name" -> day # starting at Sun=0

first.date Earliest date by row from data frame columns

Description

Earliest date by row from data frame columns

Usage

```
first.date(x, cutoff = Sys.Date() - as.difftime(6240, units = "weeks"))
```

Arguments

x	data frame of dates
cutoff	dates before that time are set to the minimum date defaults to Sys.Date() - 120
	years

Value

Returns a list of earliest dates in each row

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

first.valid.date First non-na date by row from data frame columns

Description

First non-na date by row from data frame columns

Usage

```
first.valid.date(x, dateNow = as.Date("1970-01-01"), op = `<=`, fn = min)</pre>
```

Arguments

х	data frame of dates
dateNow	cutoff date
ор	comparison operator for cutoff
fn	aggregate function for cutoff

Value

Returns a list of earliest valid dates in each row

hours

hours

Description

Difference between two timestamps in hours

Usage

hours(t1, t2)

Arguments

t1	start date
t2	end date

Value

Returns the difference between t1 and t2 in hours

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

hours24

Hours of the day

Description

Hours of the day

Usage

hours24()

Value

Returns whole numbers from 0 to 23

mark.add

Description

Intelligently add to time mark

Usage

mark.add(m, dm, mSet = mark.hr())

Arguments

m	time mark
dm	marks to ad to m
mSet	available marks (defaults to the result of mark.hr()))

Value

Returns a time mark =24*wday(d) + hour(d); 0 <= mark <= 167

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

mark.from.date Convert a date to hourly time mark (by calling mark.from.date.hr)

Description

Convert a date to hourly time mark (by calling mark.from.date.hr)

Usage

mark.from.date(d)

Arguments d

date

Value

Returns a time mark =24*wday(d) + hour(d); 0 <= mark <= 167

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

©2016 NorthShore University HealthSystem

mark.from.date.hr

mark.from.date.hr Convert date and hour to hourly time mark (by calling mark.from.day.hr)

Description

Convert date and hour to hourly time mark (by calling mark.from.day.hr)

Usage

mark.from.date.hr(d, h)

Arguments

d	date
h	hou

Value

Returns a time mark =24 * (wday(d) - 1) + h; 0 <= mark <= 167

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

mark.from.day.hr Convert numeric weekday and hour to hourly time mark

Description

Convert numeric weekday and hour to hourly time mark

Usage

```
mark.from.day.hr(d, h)
```

Arguments

d	(numeric) day of the week
h	hour

Value

Returns a time mark =24*d + h; 0 <= mark <= 167

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

mark.hr

Hourly time marks

Description

Generates a sequence of integer time marks corresponding to hours of the day by day of the week

Usage

mark.hr(dow = 0:6, hr = 0:23)

Arguments

dow	vector of weekday #'s (defaults to 0:6, where "0" is Sunday)
hr	vector of hours of the day (defaults to 0:23)

Value

Returns a list of nonnegative whole numbers signifying consecutive hour marks for the given hours of given days of the week (defaults to 0:23)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.dateUtils NS.CA.dateUtils.

Description

Date manipulation and date arithmetic

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

random.date

random.date

Description

Generate random dates within a given range

Usage

random.date(dateFrom, dateTo, startFrac = 0, n = 1)

Arguments

dateFrom	interval start
dateTo	interval end
startFrac	starting point of the interval (between 0 and 1; defaults to 0)
n	number of dates to generate (defaults to 1)

Value

Returns n random dates between dateFrom + (dateTo - dateFrom) * startFrac and dateTo

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

season.calendar.map Month-to-season map

Description

Generates a map of months to the names of calendar seasons

Usage

season.calendar.map()

Value

Returns a map in the form of "season name" -> vector of month #'s

season.from.month Season from month

Description

Season from month

Usage

season.from.month(month)

Arguments

month month(s) of the year (can be a list)

Value

Returns a list of seasons corresponding to month(s)

season. subset Get entries from the given season

Description

Given the name of a season, get the rows of a data that belong to this season

Usage

```
season.subset(x, season, field = "month", seasonMap = season.calendar.map)
```

Arguments

х	data frame
season	name of the season
field	name of the field containing the month of the corresponding date or timestamp
seasonMap	mapping function for seasons (defaults to season.calendar.map)))

Value

Returns the data frame containing only the rows from season

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

timestamp.from.date

timestamp.from.date Date to timestamp

Description

Converts a date to timestamp in the form of [yyyy][sep][mm][sep][dd]

Usage

timestamp.from.date(d = Sys.Date(), sep = "_")

Arguments

d	<pre>date (defaults to link{Sys.Date})</pre>
sep	year-month-day separator (defaults to "_")

Value

Returns a timestamp string in the form of [yyyy][sep][mm][sep][dd]

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

weekdays

One-letter weekday names

Description

Generates a sequence of one-letter weekday names ("U" - "S") or a one-letter name corresponding to the # of a day of the week (0 - 6)

Usage

weekdays(x)

Arguments ×

(optional) # of a day of the week

Value

Returns:

one-letter name of the x-th day of the week

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

year.frac.Date Calculate time interval between two dates as a fraction of the year

Description

Calculate time interval between two dates as a fraction of the year

Usage

S3 method for class 'frac.Date'
year(dt1, dt2)

Arguments

dt1	start date
dt2	end date

Value

(numeric) fraction of the year

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

yy.to.yyyy

2-digit year to 4-digit year

Description

2-digit year to 4-digit year

Usage

yy.to.yyyy(x, cutoff = 50)

Arguments

х	array of dates
cutoff	year of the century beyond which conversion is upward (i.e., "51" converts to 2051)

©2016 NorthShore University HealthSystem

164

14 Note

yy.to.yyyy

Value

Returns dates with 2-digit years converted to 4-digit years: years below cutoff are converted to the current century, otherwise go to previous century

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

date.hr.seq,2date.ind, 3 date.to.POSIXct, 3 days.in.year.Date,4 dec.to.hr.str,5 dow.map, 5 first.date,6 first.valid.date,6 hours,7 hours.24,2 hours24,7 mark.add,8 mark.from.date,8 mark.from.date.hr, 8, 9 mark.from.day.hr, 9,9 mark.hr,10 mark.hr(), 8 NS.CA.dateUtils, 10 NS.CA.dateUtils-package (NS.CA.dateUtils), 10 random.date, 11season.calendar.map, 11, 12 season.from.month, 12 season.subset, 12 timestamp.from.date, 13

weekdays, 13

year.frac.Date,14 yy.to.yyyy,14

Package 'NS.CA.mathUtils'

April 12, 2016

Type Package

Title Math extension functions

Version 2.0

Date 2014-07-09

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description Math extension functions.

Depends R (>= 3.0.3)

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

minmax.step NS.CA.mathUtils NS.CA.round	•	 			•		•	•	 	•			•	•		 •		•	•		1 2 2
																					3

Index

minmax.step Min to max sequence from a vector

Description

From a numeric vector generates a sequence from min to max with a given step

Usage

minmax.step(x, step = 1)

Arguments

х	vector of numbers
step	step of the sequence (defaults to 1)

©2016 NorthShore University HealthSystem

Value

returns a sequence of numbers from min(x) to max(x) spaced at step

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.mathUtils NS.CA.mathUtils.

Description

Auxiliary and mathematical functions redefined from base (e.g., NS.CA.mathUtils:round provides standard mathematical, not IEEE, rounding)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.round Mathematically correct rounding

Description

Rounds numbers down when the lat digit is less than 5, up otherwise

Usage

NS.CA.round(x)

Arguments

x real number

Value

Returns (integer) ceiling(x) if x ends in 0.5 or greater; floor(x) otherwise

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

©2016 NorthShore University HealthSystem

168

Index

minmax.step, 1

NS.CA.mathUtils, 2 NS.CA.mathUtils-package (NS.CA.mathUtils), 2 NS.CA.round, 2

O2016NorthShore University HealthSystem

Package 'NS.CA.modelUtils'

April 12, 2016

Title predictive modeling and statistical analysis utilities

Version 8.0

Date 2014-12-10

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description This is a collection of functions for setting up tests, analyzing survival times, calculating the odd ratio matrix with statistics and analyzing model performance.

Depends R (>= 3.0.3)

Imports ROCR, lubridate, plyr, ggplot2, survival, NS.CA.dataUtils, NS.CA.mathUtils, NS.CA.statUtils, NS.CA.dateUtils, NS.CA.plotUtils

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

auc.perf	2
auc.perf.base	3
backward.test.dates	1
charge.save	1
forward.test.dates	5
glm.test	5
glm.validate.time	7
lift.table	3
lift.table.save)
mid.test.dates)
model.comp)
NS.CA.modelUtils	1
odds.ratio.save	2
output.corr	3
perf.clsf.stat	4
ppv.sens.risk	5
rand.surv	5

1

auc.perf

rem.single.val.col			•		•	•	•	•	• •	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	16
rem.sparse.col																										•			17
run.cox.model																										•			17
run.glm.model																										•			18
surv.diff \ldots .																										•			20
surv.time.max																										•			20
																													22

Index

auc.perf

Model performance evaluation

Description

Plots AUC, Matthews correlation coefficient and F1 score auc.perf.base)

Usage

auc.perf(model, test, status, type, ...)

Arguments

model	evaluated model
test	testing data set
status	observed (actual) outcomes
type	type of predicted response (probability, response etc.)
	additional arguments passed to auc.perf.base

Value

Returns a list of model outputs:

predicted	predicted outcomes
pred	prediction object from ROCR
perf	tpr/fpr performance object from ROCR
auc	full AUC object
mat	Matthews correlation coefficient
f1	f1 score

O2016NorthShore University HealthSystem

auc.perf.base

auc.perf.base Model performance evaluation

Description

Plots AUC, Matthews correlation coefficient and F1 score

Usage

```
auc.perf.base(prediction, status, digits = PERF.DIGITS, text = "",
mfrow = AUC.MFROW, oma = AUC.OMA, plotFile = NA, width = 11,
height = 8.5)
```

Arguments

prediction	predicted data
status	observed (actual) outcomes
digits	# of decimal digits to display on the AUC graph (defaults to PERF.DIGITS))
text	graph caption (defaults to an empty string)
mfrow	graph panel parameters (defaults to AUC.MFROW)
oma	graph margin parameters (defaults to AUC.OMA)
plotFile	name of the file for saving PDF of the plot (defaults to NA, in which case nothing is saved)
width	width of the plot in inches (defaults to 11, ignored if plotFile is missing)
height	height of the plot in inches (defaults to 8.5, ignored if plotFile is missing)

Value

Returns a list of model outputs:

pred	prediction object from ROCR
perf	tpr/fpr performance object from ROCR
auc	full AUC object
mat	Matthews correlation coefficient
f1	f1 score

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

backward.test.dates Set up backward test program

Description

Break up dates into training and testing datasets allowing for at least one observed period after the training date

Usage

```
backward.test.dates(dates, dateNow = Sys.Date(), period = AUC.PERIOD)
```

Arguments

dates	list of dates (for which data is available)
dateNow	today's date (defaults to system date)
period	(observation) period (defaults to AUC.PERIOD)

Value

Returns a list of vectors of dates:

Train	for the training data set(first period)
Test	for all other periods at least one period prior to today

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

charge.save

Charges for predicted hospitalizations

Description

Compute and save charges for specific and general hospitalizations

Usage

```
charge.save(risk, x, chargeCol, idCol = ID.COL, predCol = PRED.COL,
actCol = ACT.COL, chargeDir = ".", chargeFile = "Chrg_",
timeStamp = TIMESTAMP)
```

forward.test.dates

Arguments

risk	data frame of computed and actual risk data ordered by predicted probabilities of outcome of interest in descending order. It should contain (at least) the following columns:
	<pre>idCol identification column (key; defaults to ID.COL) predCol predicted outcome column actCol actual outcome column</pre>
x	event data frame including charges
chargeCol	column(s) of charges in x
idCol	ID column of x (defaults to ID.COL)
predCol	$column(s) \ of \ predicted \ probabilities \ of \ outcome \ of \ interest \ (defaults \ to \ {\tt PRED}.{\tt COL})$
actCol	column(s) of actual outcomes of interest (defaults to ACT.COL)
chargeDir	directory for saving the charge file (defaults to "./")
chargeFile	file name prefix for saving the charge file (defaults to "Chrg_")
timeStamp	file name identification timestamp (defaults to TIMESTAMP)

Value

Returns a data frame of mean charges per row of x (patient) with chargeCol columns

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

forward.test.dates Set up forward test program

Description

Break up dates into training and testing datasets allowing for at least one observed period after the last test date

Usage

```
forward.test.dates(dates, dateNow = Sys.Date(), period = AUC.PERIOD)
```

Arguments

dates	list of dates (for which data is available)
dateNow	today's date (defaults to system date)
period	(observation) period (defaults to AUC.PERIOD)

glm.test

Value

Returns a list of vectors of dates:

Train	for the training data set(first period)
Test	for all other periods at least one period prior to today

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

glm.test

glm (classification) model fit assessment

Description

Runs glm (classification) model fit assessments on a dataset

Usage

```
glm.test(dataSet, statusCol, testRows, threshold = AUC.THRESHOLD,
family = "binomial", type = "response", trace = F, maxit = 25,
varJoiner = "+", corrMat = F, ...)
```

Arguments

orginal data set for testing the fit
(observed) outcomes
rows belonging to the testing set
classification sensitivity threshold (i.e., what fraction of dataSet we are selecting as having an outome of interest; defaults to AUC.THRESHOLD)
model family (defaults to 'binomial')
response type for prediction (defaults to 'response')
(logical) trace the convergence? (defaults to FALSE)
max # of iterations (defaults to 25)
variable joiner parameter: '+', '*' or ':' (defaults to '+')
(logical) display correlation matrix plot (defaults to F)
additional arguments passed to auc.perf

Value

Returns a list of vectors of dates:

model	glm model
eff	predicted and actual outcomes side by side
mean	PPV of up to threshold highest ranking outcomes of interest
perf	model statistics (including auc) passed up from auc.perf

glm.validate.time

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

glm.validate.time Validate glm (classification) model

Description

Validates glm (classification) model according to the rules provided by a parameter function

Usage

Arguments

dataSet	orginal data set for testing the fit
statusCol	(observed) outcomes
testDates	Test dates within dataSet AUC.PERIOD), where:
	dates list of dates
	dateNow date
	period (lubridate) Period
threshold	classification sensitivity threshold (i.e., what fraction of dataSet we are selecting as having an outome of interest; defaults to AUC.THRESHOLD)
dateField	date filed in dataSet (defaults to "AS_OF_DATE")
period	(lubridate) Period between dataset dates (defaults to AUC.PERIOD)
corrMat	(logical) display correlation matrix plot (defaults to F)
	additional arguments passed to auc.perf

Value

Returns a list of vectors of dates:

model glm model

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

©2016 NorthShore University HealthSystem

```
lift.table Lift table
```

Description

Tabulates PPV and sensitivity at specified points by percentage using linear approximation

Usage

```
lift.table(x, pctList, totalSize, pctCol = "Percent.Flagged",
    actPosCol = "Number.Actual", actCol = "Actual", ppvCol = "PPV",
    sensCol = "Sensitivity")
```

Arguments

х	model performance data frame
pctList	vector of data points (percentages) for which lift statistics are sought
totalSize	total population size
pctCol	column of x containing the percentage (flagged) column in x (defaults to "Percent.Flagged")
actPosCol	column of x containing the # of actual positive cases in the percentage of the test population given by pctList (defaults to "Number.Actual")
actCol	column of x containing the # of actual positive cases in the test population (defaults to "Number.Actual")
ppvCol	column of x containing positive predictive value (PPV) (defaults to "PPV")
sensCol	column of x containing sensitivity (defaults to "Sensitivity")

Value

Returns a data frame of lift statistics:

Pct.Total	percentage of total population for which lift statistics is sought	
Num.Flagged.Total		
	# of entries in the total population corresponding to Pct.Total	
Num.Flagged.Test		
	# of flagged entries in the test dataset corresponding to Pct.Total	
Num.True.Pos.Test		
	# of true positives in the test dataset corresponding to Pct.Total	
PPV	positive predicted value	
Sensitivity	sensitivity	
F1	F1 statistic (harmonic average of PPV and Sensitivity)	

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Lift table and risk rankings for all and high-risk patients lift.table.save

Description

Compute and save the lift table using lift.table) and save the risk matrices for all and topRiskNum high-risk patients

Usage

```
lift.table.save(prSort, nRec, dates, today, allRisk, steps = c(0.01, 0.05,
  0.1, 0.2, 0.3, 0.5, 1), nullHypStep = NA, resultDir = "./",
 liftFile = "Lift_", liftThreshold = 0.05, riskFile = "HiRisk_",
  topRiskNum = 100, topRiskFile = "HiRiskRand_", timeStamp = TIMESTAMP)
```

Arguments

prSort	data frame of risk statistics with row names corresponding to patient data entries in x computed as a result of test.odds.ratio)
nRec	total # of patients
dates	dates in the dataset
today	calculation date
allRisk	data frame of PPV / sensitivity / lift statistics computed as a result of ppv.sens.risk)
steps	tabulation steps of lift statistics table (defaults to c(0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1))
nullHypStep	tabulation step corresponding to the null hypothesis (benchmark algorithm; de- faults to NA). If provided, is inserted into steps and sorted
resultDir	directory for saving the files (defaults to "./")
liftFile	file name prefix for saving lift statistics (defaults to "Lift_")
liftThreshold	fraction of patients from the list to select (defaults to 0.05)
riskFile	file name prefix for saving the risk rankings file (defaults to "HiRisk_")
topRiskNum	# of patients to select randomly from the high risk list (defaults to 100)
topRiskFile	file name prefix for saving the top risk rankings file (defaults to "HiRiskRand_topRiskNum")
timeStamp	file name identification timestamp (defaults to TIMESTAMP)

Value

No return parameter

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

©2016 NorthShore University HealthSystem

mid.test.dates Set up backward test program

Description

Break up dates into training and testing datasets allowing for at least one observed period after the training date

Usage

mid.test.dates(dates, dateNow = Sys.Date(), period = AUC.PERIOD)

Arguments

dates	list of dates (for which data is available)
dateNow	today's date (defaults to system date)
period	(observation) period (defaults to AUC.PERIOD)

Value

Returns a list of vectors of dates:

Train	for the training data set(first and last period)
Test	for all other periods in between

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

model.comp

Compare two models by performance and charges

Description

Compare performance of two models, compute and save respective patients' charges

Usage

```
model.comp(altPred, x, outCol, outInd, chargeCol, idCol = ID.COL,
    predCol = PRED.COL, nRows = 1000, aucText = "Original model",
    chargeDir = ".", chargeFile = "ChrgOM_", perfFile = "PerfOM_",
    timeStamp = TIMESTAMP, ...)
```

NS.CA.modelUtils

Arguments

altPred	data frame of computed pronbabilities of outcome of interest and actual out- come(s). It should contain (at least) the following columns:
	idCol identification column (key; defaults to ID.COL)
	outcomes outcome column(s)
x	event data frame including charges
outCol	vector of columns containing outcomes
outInd	outcome(s) of interest index(indices)
chargeCol	column(s) of charges in x
idCol	ID column of x (defaults to ID.COL)
predCol	$column(s) \ of \ predicted \ probabilities \ of \ outcome \ of \ interest \ (defaults \ to \ {\tt PRED.} \ {\tt COL})$
nRows	number of entries in x (patients) selected for comparison
aucText	performance plot caption (defaults to "Original model")
chargeDir	directory for saving the charge file (defaults to "./")
chargeFile	file name prefix for saving the charge file (defaults to "ChrgOM_")
perfFile	file name prefix for saving the performance and charge file (defaults to "PerfOM_") $% \mathcal{M}_{\mathrm{s}}^{\mathrm{T}}(\mathcal{M}_{\mathrm{s}})$
timeStamp	file name identification timestamp (defaults to TIMESTAMP)
	additional arguments passed to auc.perf.base

Value

Returns a data frame of mean charges per row of x (patient) with the following columns

outCol	outcome column(s)
chargeCol	charge columns

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.modelUtils NS.CA.modelUtils.

Description

Model performance statistics, test programming and graphing
Arguments

AUC.MFROW	c(2,2)
AUC.OMA	c(0,0,2,0)
AUC.THRESHOLD	0.05
AUC.PERIOD	<- years(1)
SPARSE.MIN	<- 0.2
CORR.MIN	<- 0.6
SIG.LEV	<- 0.95
ID.COL	<- "PAT_MRN_ID"
PRED.COL	<- "Predicted"
ACT.COL	<- "Actual"
TIMESTAMP	<- timestamp.from.date()
COX.ITER.MAX	<- 100
PERF.DIGITS	<- 4

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.save

Combined indicator and numerical odds ratio

Description

Compute and save indicator and numerical odds ratios using odds.ratio.summary) and odds.ratio.num)

Usage

Arguments

х	event data frame
statCol	name of the column of observed outcomes
indCol	indicator columns
idCol	ID column of x (defaults to ID.COL)
addList	list of additional odds ratio tables (defaults to NA)
oRdir	directory for saving the odds ratio files (defaults to "./")
indORfile	file name prefix for saving the indicator odds ratio file (defaults to "ORind_")
uniORfile	file name prefix for saving the univariate odds ratio file (defaults to "ORuni_")
sigLev	confidence level for testing the statistical significance of coefficients (their difference from 0; defaults to SIG.LEV))
timeStamp	file name identification timestamp (defaults to TIMESTAMP)
	additional parameters passed to odds.ratio.matrix)

©2016 NorthShore University HealthSystem

12

output.corr

Value

Returns a data frame of univariate odds ratios:

Variable	variable name
Odds.Ratio	univariate odds ratio
StdError	standard error[ln(odds ratio)]
Prz	probability of z.value exceeeding the significance level
CI.Lower	lower confidence interval boundary of odds ratio
CI.Upper	upper confidence interval boundary of odds ratio
Validity	statistical significance marker ('*' = valid)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

output.corr	Plot and save correlation matrices and tables
-------------	---

Description

Compute correlation matrices for indicator and numerical variables by calling high.corr) and high.corr.df) and save high correlation matrices to .csv files as data frames and tables

Usage

```
output.corr(x, indCol, minCor = CORR.MIN, dir = "./",
    corNumFile = "CorNum_Prior_", corNumTabFile = "CorNum_PriorTable_",
    corIndFile = "CorInd_Prior_", corIndTabFile = "CorInd_PriorTable_",
    corrPlotDir = "./", plotNumFile = "Corr_Num_",
    plotIndFile = "Corr_Ind_", timeStamp = TIMESTAMP, ...)
```

Arguments

х	event data frame
indCol	indicator columns
minCor	high correlation threshold (defaults to CORR.MIN)
dir	directory into which .csv files will be stored (defaults to "./")
corNumFile	file name prefix for numerical variable correlation matrix (defaults to "Cor-Num_Prior_")
corNumTabFile	file name prefix for numerical variable correlation table (defaults to "CorNum_PriorTable_")
corIndFile	file name prefix for indicator variable correlation matrix (defaults to "CorInd_Prior_")
corIndTabFile	file name prefix for indicator variable correlation matrix (defaults to "CorInd_PriorTable_")
corrPlotDir	directory for saving correlation matrix plots (defaults to "./")
plotNumFile	file name prefix for the numerical predictor correlation matrix (defaults to "Corr_Num_")
plotIndFile	file nam prefix for the indicator predictor correlation matrix (defaults to "Corr_ind_")
timeStamp	file name identification timestamp (defaults to TIMESTAMP)
	additional arguments passed to auc.perf.base

Value

Returns a data frame of highly correlated pairs of variables, including their correlations:

var1	1st variable in a highly correlated pair
var2	2nd variable in a highly correlated pair
cor	correlation betwen the two variables

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

perf.clsf.stat Performance statistics for a classification model

Description

Provides validation statistics for a classification model based on predicted (and, if availabel, actual) outcomes

Usage

```
perf.clsf.stat(predicted, totalSize = nrow(predicted), actual = NULL)
```

Arguments

predicted	predicted outcomes
totalSize	size of the original (whole) data set (defaults to nrow($\ensuremath{predicted}\xspace$)
actual	Observed outcomes (defaults to NULL)

Value

Returns a data frame of model performance metrics sorted by predicted values in descending order with columns:

Regardless of whether outcomes in actual were supplied

Predicted predicted values Number.Flagged # of entries flagged in the testing data set as having positive outcomes Number.In.Whole # of entries flagged in the whole data set (training + testing) as having positive outcomes

ONLY if outcomes in actual were supplied

Actual	(if actual is supplied) observed outcomes
Number.Actual	# of observed positive outcomes
PPV	positive predictive value
Sensitivity	model sensitivity
Lift	model lift at the given point

ppv.sens.risk

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

ppv.sens.risk

Plot and save the PPV / sensitivity graph and the risk matrix

Description

Plot and save the standard PPV / sensitivity graph ppv.sens.plot) and save the risk matrix

Usage

```
ppv.sens.risk(x, prSort, scenario, ppvSensText, idCol = ID.COL,
graphDir = "./", resultDir = "./", ppvFile = "PPV_Sens_",
riskFile = "AllRisk_", timeStamp = TIMESTAMP)
```

Arguments

х	event data frame
prSort	data frame of risk statistics with row names corresponding to patient data entries in x computed as a result of test.odds.ratio)
scenario	name of the scenario for which the data is saved
ppvSensText	graph title for the PPV / sensitivity plot
idCol	ID column of x (defaults to ID.COL)
graphDir	directory for saving the PPV / sensitivity plot (defaults to "./")
resultDir	directory for saving the risk file (defaults to "./")
ppvFile	file name prefix for saving the PPV / sensitivity plot (defaults to "PPVsens_")
riskFile	file name prefix for saving the risk file (defaults to "AllRisk_")
timeStamp	file name identification timestamp (defaults to TIMESTAMP)

Value

Returns a data frame of risk statistics with row names corresponding to patient data entries in x (see perf.clsf.stat).

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

rand.surv

Description

Select one row of data for those patients in the mortality model who remained alive for at least two dates during the observation period. If patient has only one row, it is returned, otherwise one is selected at random from all patient's data.

Usage

rand.surv(x, field = ID.COL, seed = NULL)

Arguments

х	patient data frame
field	patient identifier (defaults to ID.COL)
seed	random sampler seed (defaults to NULL, (quasi)random)

Value

Returns a vector of row numbers

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

rem.single.val.col Remove single-valued columns from a data matrix

Description

Remove single-valued (indicator) columns from a data frame

Usage

rem.single.val.col(x)

Arguments ×

event data frame

Value

Returns x without single-valued columns

rem.sparse.col

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

rem.sparse.col Remove sparse columns from a data matrix

Description

Remove from a data frame those columns where more than SPARSE.MIN) of the data is absent

Usage

rem.sparse.col(x, trainRows, col, sparseMin = SPARSE.MIN)

Arguments

х	event data frame
trainRows	rows of x used for the training dataset
col	columns of interest
sparseMin	threshold proportion of missing values above which a column is ignored

Value

Returns x without sparse rows

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

run.cox.model

Run the coxph (Cox) model and compute its performance metrics

Description

Run the Cox model and compute its performance metrics by calling auc.perf) and perf.clsf.stat)

Usage

```
run.cox.model(train, test, today, inclCol, exclCol, statCol,
    dDateCol = "DEATH_DATE", aDateCol = "AS_OF_DATE", varJoiner = "+",
    maxIter = COX.ITER.MAX, coefDir = ".", coefFile = "Coef_All_Cox_",
    plotDir = ".", plotFile = "Cox_AUC_",
    text = "Cox survival model analysis", timeStamp = TIMESTAMP, ...)
```

Arguments

train	training dataset
test	testing dataset
today	valuation date
inclCol	included columns
exclCol	excluded columns
statCol	name of the column of observed outcomes
dDateCol	outcome date column (defaults to "DEATH_DATE")
aDateCol	as-of date column (defaults to "AS_OF_DATE")
varJoiner	formula parameter for the glm model (defaults to '+')
maxIter	max # of iterations for coxph (defaults to MAX. ITER)
coefDir	directory for saving model coefficients (defaults to "./")
coefFile	file name prefix for saving model coefficients (defaults to "Coef_All_")
plotDir	directory for saving AUC plot files (defaults to "./")
plotFile	file name prefix for saving AUC plot files (defaults to "Cox_AUC_")
text	graph caption (defaults to "Cox survival model analysis")
timeStamp	file name identification timestamp (defaults to TIMESTAMP)
	additional arguments passed to auc.perf

Value

Returns a data frame of risk statistics with row names corresponding to patient data entries in x (see perf.clsf.stat).

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

run.glm.model Run the glm model, compute correlation matrices and tables

Description

Run the model, compute correlation matrices for indicator and numerical variables by calling high.corr) and high.corr.df), save high correlation matrices to .csv files as data frames and tables, save model coefficients as a table and compute and plot performance statistics using perf.clsf.stat)

Usage

```
run.glm.model(x, trainRows, testRows, inclCol, exclCol, statCol, uniOddsRatio,
numRec, varJoiner = "+", minCor = CORR.MIN, scaleArg = c(cex = 0.6),
threshold = 0.05, maxit = 100, sigLev = SIG.LEV, trace = T,
trainText = "Training set AUC", testText = "Testing set AUC",
oRdir = "./", oRfile = "OR_All_", coefDir = "./",
coefFile = "Coef_All_", corrPlotDir = "./",
trainAUCplotFile = "AUC_Train_", testAUCplotFile = "AUC_Test_",
corrPlotFile = "Corr_Mat_All_", timeStamp = TIMESTAMP, ...)
```

©2016 NorthShore University HealthSystem

18

run.glm.model

Arguments

х	event data frame
trainRows	rows of x belonging to the training data set
testRows	rows of x belonging to the test data set
inclCol	included columns
exclCol	excluded columns
statCol	name of the column of observed outcomes
uniOddsRatio	univariate odds ratio data frame containing columns Variable, Odds.Ratio, Prz., CI.Lowe and Validity with row names the same as the values of Variable
numRec	total # of records in the original dataset
varJoiner	formula parameter for the glm model (defaults to '+')
minCor	high correlation threshold (defaults to CORR.MIN)
scaleArg	label scaling (defaults to c(cex=1), i.e., full size)
threshold	percentage of high risk patients to select (defaults to 0.05)
maxit	maximum number of iterations in the glm model (defaults to 100)
sigLev	confidence level for testing the statistical significance of coefficients (their dif- ference from 0; defaults to SIG.LEV))
trace	trace glm iterations? (defaults to TRUE)
trainText	graph title for performance plots for the training set (defaults to 'Training set AUC')
testText	graph title for performance plots for the text set (defaults to "")
oRdir	directory for saving odds ratios (defaults to "./")
oRfile	file name prefix for saving odds ratios (defaults to "OR_All_")
coefDir	directory for saving model coefficients (defaults to "./")
coefFile	file name prefix for saving model coefficients (defaults to "Coef_All_")
corrPlotDir	directory into which correlation matrix plots will be stored (defaults to "./")
trainAUCplotFil	e
	file name prefix for saving training set AUC plots (defaults to "AUC_Train_")
testAUcpiotFile	file name prefix for saving testing set AUC plots (defaults to "AUC Test ")
corrPlotFile	file name prefix for saving the all-factor correlation matrix plot (defaults to "Corr_Mat_All_")
timeStamp	file name identification timestamp (defaults to TIMESTAMP)
	additional arguments passed to auc.perf and high.corr

Value

Returns a data frame of risk statistics with row names corresponding to patient data entries in x (see perf.clsf.stat).

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

©2016 NorthShore University HealthSystem

19

surv.diff Survival time

Description

Compute survival time as the number of days from the start of the observation interval to the minimum of outcome date and interval end

Usage

surv.diff(asOfDate, today, outcomeDate, fmt = "%m/%d/%Y")

Arguments

asOfDate	date stamp of the beginning of the interval
today	maximum survival date (today's date)
outcomeDate	date stamp of the end of the interval
fmt	date format (defaults to "%m/%d/%Y")

Value

Returns the difference in days (integer) between asOfDate and min(outcomeDate, today)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

surv.time.max Maximum survival time

Description

Maximum survival time

Usage

```
surv.time.max(dt, startDate, maxDate, maxVal = 1e+10)
```

Arguments

dt	list or data frame of time intervals with possible NAs
startDate	list of interval starting dates
maxDate	scalar or list of cutoff dates
maxVal	maximum value for the interval (defaults to 1e10)

surv.time.max

Value

Returns a list or data frame of intervals where NAs are backfilled with maximum observation lengths

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

ACT.COL, 5 AUC.MFROW, 3 AUC.OMA, 3 auc.perf, 2, 6, 7, 17–19 auc.perf.base, 2, 3, 11, 13 AUC.PERIOD, 4, 5, 7, 10 AUC. THRESHOLD, 6, 7 backward.test.dates,4 charge.save, 4CORR.MIN, 13, 19 forward.test.dates,5 glm.test,6 glm.validate.time, 7high.corr, 13, 18, 19 high.corr.df, *13*, *18* ID.COL, 5, 11, 12, 15, 16 lift.table, 8,9 lift.table.save,9 MAX.ITER, 18 mid.test.dates, 10 model.comp, 10NS.CA.modelUtils, 11 NS.CA.modelUtils-package (NS.CA.modelUtils), 11 odds.ratio.matrix, 12 odds.ratio.num, 12 odds.ratio.save, 12odds.ratio.summary, l2output.corr, 13 perf.clsf.stat, 14, 15, 17-19 PERF.DIGITS, 3 ppv.sens.plot, 15 ppv.sens.risk,9,15 PRED.COL, 5, 11

rand.surv, 16
rem.single.val.col, 16
rem.sparse.col, 17
run.cox.model, 17
run.glm.model, 18

SIG.LEV, 12, 19 SPARSE.MIN, 17 surv.diff, 20 surv.time.max, 20

test.odds.ratio, 9, 15 TIMESTAMP, 5, 9, 11–13, 15, 18, 19

22

Package 'NS.CA.plotUtils'

April 12, 2016

Title plotting utilities

Version 3.0

Date 2015-01-28

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description Custom plotting functions.

Depends R (>= 3.0.3)

Imports plotrix, scales, ggplot2, NS.CA.dateUtils

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

legend.quantile	2
lm.eqn	2
NS.CA.plotUtils	3
plots.order	3
ppv.sens.plot	4
template.plot.hourly	4
theme.ribbon	5
title.plot	6
title.plot.elem	6
two.ord.plot	7
x.mark.hourly	8
x.tick.hourly	8
y.scale	9
y.tick	10

Index

1

legend.quantile Quantile legend generator

Description

Generates quantile legend

Usage

```
legend.quantile(quantile, shift = 1)
```

Arguments

quantile	vector of quantiles of interest (can be of length 1)
shift	how many intervals to exclude from the legend (defaults to 1; used mainly for
	compatibility with ggplot)

Value

Returns a list of strings describing quantiles

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

lm.eqn

Construct a linear regression equation string from x and y using lm

Description

Construct a linear regression equation string from x and y using lm

Usage

lm.eqn(x, y)

Arguments

х	x-values
У	y-values

Value

Returns a string containing the regression equation obtained using lm($y \sim x$)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.plotUtils NS.CA.plotUtils

Description

Functions for graphing (predictive) model performance metrics and statistics and functional dependencies for model data

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

plots.order

Order a list of plots

Description

Order a list of plots

Usage

plots.order(x, order)

Arguments

х	(named) list of plots
order	sort order

Value

Returns the original list of plots in the specified order

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

ppv.sens.plot PPV and Sensitivity plot

Description

Plots a PPV and Sensitivity plot using ggplot

Usage

```
ppv.sens.plot(x, xCol = "Percent.Flagged", ppvCol = "PPV",
sensCol = "Sensitivity", xTickSeq = seq(0, 1, by = 0.1),
yTickSeq = xTickSeq, main = "Model performance metrics")
```

Arguments

х	model performance data frame
xCol	abscissa column in x (defaults to "Percent.Flagged")
ppvCol	positive predictive value (PPV) column in x (defaults to "PPV")
sensCol	sensitivity column (defaults to "Sensitivity")
xTickSeq	abscissa tick sequence (defaults to seq(0, 1, by=0.1))
yTickSeq	ordinate tick sequence (defaults to xTickSeq)
main	plot title (defaults to "PPV / Sensitivity")
	additional parameters passed to twoord.plot

Value

ggplot object

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

template.plot.hourly Temporal plot template

Description

Temporal plot template

Usage

```
template.plot.hourly(x, breaks, xTick, legPos = "bottom", size = 1,
colour = "black", linetype = "dotted", xAngle = 90)
```

theme.ribbon

Arguments

х	data frame to plot
breaks	tick mark positions
xTick	x-axis labels
legPos	legend position (defaults to 'bottom')
size	grid line size (defaults to 1)
colour	grid line color (defaults to black)
linetype	grid line type (defaults to "dotted")
xAngle	angle of rotation for x-axis labels (defaults to 90, counterclockwise)

Value

Returns a ggplot object with the specified parameters

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

theme.ribbon Create a ggplot theme for a ribbon plot

Description

Create a ggplot theme for a ribbon plot

Usage

```
theme.ribbon(legPos = "bottom")
```

Arguments

legPos legend position (deafults to 'bottom')

Value

Returns a theme for a ribbon plot

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

title.plot Plot title generator

Description

Generates a plot title from the base title string, pavilion, season, date boundaries, quantile and modified acuity

Usage

title.plot(t, pavilion, season, dateFrom, dateTo, quantile, acute)

Arguments

t	base title string
pavilion	pavilion
season	season
dateFrom	starting date
dateTo	end date
quantile	vector of quantiles of interest
acute	modified acuity

Value

Returns an enhanced plot tile as a string

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

title.plot.elem Plot title font

Description

Plot title font

Usage

```
title.plot.elem()
```

Value

Returns element_text(size=12, colour = "black", face="bold", vjust=0.12)

two.ord.plot

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

two.ord.plot Two-ordinate PPV and Sensitivity plot

Description

Plots a two-ordinate PPV and Sensitivity plot using plotrix:twoord.plot

Usage

```
two.ord.plot(x, xCol = "Percent.Flagged", ly = "PPV", ry = "Sensitivity",
    xlab = "Percentage of patients flagged", xTickSeq = seq(0, 1, by = 0.1),
    lyTickSeq = seq(0, 1, by = 0.05), ryTickSeq = xTickSeq,
    ylab = "Positive predictive value", rylab = "Sensitivity", lcol = "red",
    rcol = "blue", main = "PPV / Sensitivity", type = "l",
    do.first = "grid(ny=NA, col='black',lty='dotted')", ...)
```

Arguments

х	model performance data frame
xCol	abscissa column in x (defaults to "Percent.Flagged")
ly	left ordinate in x (defaults to "PPV")
ry	right ordinate in x (defaults to "Sensitivity")
xlab	asbcissa label (defaults to "Percentage of patients flagged")
xTickSeq	tick sequence (defaults to seq(0, 1, by=0.1))
lyTickSeq	left oridante tick sequence (defaults to seq(0, 1, by=0.05))
ryTickSeq	right oridante tick sequence (defaults to lyTickSeq)
ylab	left ordinate label (defaults to "Positive predictive value")
rylab	right ordinate label (defaults to "Sensitivity")
lcol	left ordinate color (defaults to "red")
rcol	right ordinate color (defaults to "blue")
main	plot title (defaults to "PPV / Sensitivity")
type	plot type (defaults to 'l')
do.first	plot oprations performed before plotting the curves (defaults to "grid(col='black',lty='dotted')")
	additional parameters passed to twoord.plot

Value

None

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

©2016 NorthShore University HealthSystem

7

x.mark.hourly X-axis tick placement for a weekly hour-by-hour plot

Description

X-axis tick placement for a weekly hour-by-hour plot

Usage

```
x.mark.hourly(mark, xStep = 4)
```

Arguments

mark	original x-axis coordinates from x
xStep	tick interval (deafults to 4)

Value

Returns a vector of tick mark coordinates as an equidistant sequence

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

x.tick.hourly Tick marks for a weekly hour-by-hour plot

Description

Tick marks for a weekly hour-by-hour plot

Usage

```
x.tick.hourly(xStep = 4)
```

Arguments

xStep tick interval (deafults to 4)

Value

Returns a vector of tick marks in the form of "<one-letter day of the week>.<hour of the day out of 24>"

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

y.scale

y.scale

Y axis scaling

Description

Given a data frame, generates ticks for the y-axis and scales the graph using y. tick

Usage

```
y.scale(x, col, scale, step, minCol = "qDiffMin", maxCol = "qDiffMax",
absOut = "abs", diffOut = "diff", outNames = c(absOut, diffOut))
```

Arguments

х	data frame
col	column of x to be graphed
scale	scaling vector in the form of c(min, max) to be passed to ggplot as y-axis limits
step	tick step
minCol	column of x containing minimum differences (defaults to qDiffmin)
maxCol	column of x containing maximum differences (defaults to qDiffMax)
absOut	name of the output element of the scale list containing absolute values (defaults to abs)
diffOut	name of the output element of the scale list containing differences from the benchmark (defaults to diff)
outNames	vector of names for the output element scale (defaults to c(<code>absOut</code> , <code>diffOut</code>))

Value

Returns	
yTickSeq	tick sequence for the y-axis
scale	list of two-element vectors of min and max absolute values and differences

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

y.tick Y axis ticks

Description

Given a data vector, generates a sequence from min to max with a given step

Usage

y.tick(y, yStep, round = T)

Arguments

У	numeric vector
yStep	tick step
round	data rounding flag (defaults to T)

Value

Returns a sequence of #'s from min(y) to max(y) with a step of yStep

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

ggplot, 2, 5, 9

legend.quantile,2
lm.eqn,2

NS.CA.plotUtils, 3 NS.CA.plotUtils-package (NS.CA.plotUtils), 3

plots.order, 3
ppv.sens.plot, 4

template.plot.hourly, 4
theme.ribbon, 5
title.plot, 6
title.plot.elem, 6
two.ord.plot, 7

x.mark.hourly, 8
x.tick.hourly, 8

y.scale,9 y.tick,9,10

Package 'NS.CA.statUtils'

April 12, 2016

Title custom statistical utilities

Version 7.0

Date 2015-10-20

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description Custom statistical functions.

Depends R (>= 3.0.3)

Imports lattice, vcd, plyr, reshape2, ROCR

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

high.corr	2
high.corr.df	3
matt.corr	3
multi.category.stats	4
NS.CA.mode	5
NS.CA.statUtils	5
odds.ratio.logit	6
odds.ratio.matrix	6
odds.ratio.multi	7
odds.ratio.num	8
odds.ratio.stat	9
odds.ratio.summary	0
odds.ratio.table	0
percent.NA.col	1
pos.stat	2

Index

13

high.corr

high.corr

High correlation elements

Description

Plots the correlation matrix of a dataset, returns high correlation elements

Usage

```
high.corr(dataSet, minCor, text = "Correlation matrix", xArg = list(x =
list(rot = 90)), scaleArg = c(cex = 1), plotFile = NA, width = 11,
height = 8.5, fnCor = abs, ...)
```

Arguments

dataSet	orginal data set for testing the fit
minCor	lower threshold for high correlation elements (defaults to 0.6)
text	plot caption
xArg	x label arguments (defaults to list(<code>x=list(rot=90)</code>), i.e., x labels are rotated 90 degrees counterclockwise)
scaleArg	label scaling (defaults to c(cex=1), i.e., full size)
plotFile	file name prefix saving PDF of the plot (defaults to NA, in which case nothing is saved)
width	width of the plot in inches (defaults to 11, ignored if plotFile is missing)
height	height of the plot in inches (defaults to 8.5, ignored if plotFile is missing)
fnCor	function that defines low correlation threshold (defaults to abs)
	additional parameters to pass to levelplot (correlation matrix plotting function)

Value

Returns a matrix with off-diagonal high correlation elements (other entries included)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

high.corr.df

high.corr.df High correlation data frame

Description

Package the elements of a (high) correlation matrix into a data frame

Usage

high.corr.df(hiCor, minCor, fnCor = abs)

Arguments

hiCor	(high) correlation matrix
minCor	lower threshold for high correlation elements (defaults to 0.6)
fnCor	function that defines low correlation threshold (defaults to abs)

Value

Returns a data frame containing:

var1	first variable in a high correlation pair
var2	second variable in a high correlation pair
cor	(high) correlation value

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

matt.corr

Matthews correlation coefficient for large numbers

Description

Matthews correlation coefficient for large numbers

Usage

matt.corr(pred)

Arguments

pred ROCR::prediction object

Value

Mathews correlation coefficient

multi.category.stats Relative benchmark contingency table statistics for categorical variables

Description

For a categorical variable,

- · select a benchmark level against which the rest will be measured
- create a 2 x 2 pairwise contingency table for the remaining levels against the benchmark
- calculate χ^2 p-values and frequencies of outcomes of interest

Usage

```
multi.category.stats(x, multiLevCol, outcome, rareThreshold, benchmark,
  multiLevColOther = "Other", outcomeCol = c("1", "0"),
  fnSignif = fisher.test, level = 0.95, ...)
```

Arguments

х	orginal data set (matrix or data frame)
multiLevCol	column of \boldsymbol{x} containing the categorical variable used in the calculation of the statistics
outcome	name of column of x contating the output
rareThreshold	fraction of total below which categories are rolled up to the next level
benchmark name of the benchmark level multiLevColOther	
	name of the catgch-all category into which categories below rareThreshold are rolled up (defaults to "Other") $$
outcomeCol	column names for outcome columns (defaults to $c("0", "1")$)
fnSignif	function to use for significance testing (defaults to fisher.test)
level	rejection level for the CI (defaults to 0.95 or 5%)
	additional parameters to pass to odds.ratio.table

Value

Returns a data frame whose columns contain:		
<multilevelcol></multilevelcol>		
	levels of the original categorical variable	
<pre><outcomecol[1]></outcomecol[1]></pre>		
	counts of variables at the first outcome level	
<pre><outcomecol[2]></outcomecol[2]></pre>		
	counts of variables at the second outcome level	
Pct	percentage of all entries in x in the given category	
p.value	χ^2 value that corresponds to the given category	
PctPos	fraction of "positive" outcomes for the given category	

NS.CA.mode

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.mode *Mode(s) of the distribution*

Description

Mode(s) of the distribution

Usage

NS.CA.mode(x, fun = function(y) { y })

Arguments

х	matrix or data frame containing the distribution(s) (convert to matrix if list)
fun	function determining which mode to select in the multimodal case

Value

Returns the mode of the distribution

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.statUtils NS.CA.statUtils

Description

Statistical utilities for overriding similarly named functions from other packages (e.g., NS.CA.mode) and functions for describing (predictive) model performance metrics and statistics

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.logit

Odds ratio statistics for (primarily) numerical variables given the $\$ (prebuilt) model

Description

Generates from a prebuilt model a single row data frame with unadjusted and adjusted odds ratios (OR) and confidence intervals (CI) for OR, mean (exponential) and standard (ln) logistic multivariate model errors

Usage

odds.ratio.logit(glmFit, coefInd, level = 0.95)

Arguments

glmFit	(generalized linear) model
coefInd	index of the coefficient of the variable in glmFit
level	rejection level for the CI (defaults to 0.95 or 5%)

Value

Returns a (single row) data frame with OR statistics as columns:

Odds.Ratio	odds ratio
Std.Error	standard error[ln(odds ratio)]
P.Value	P-value of [ln(odds ratio)]
CI.Lower	lower confidence interval boundary of odds ratio
CI.Upper	upper confidence interval boundary of odds ratio
Validity	statistical significance marker ('*' = valid)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.matrix Odds ratio statistics

Description

Generates from a data frame with row-wise outcomes a comprehensive odds ratio (OR) data frame that includes ln(odds ratio), confidence interval (CI) and p-value for ln(OR), OR proper, CI(OR) and the validity indicator (valid if 1 is not inside the CI)

Usage

```
odds.ratio.matrix(x, outcome, oddsRatioCol = colnames(x), level = 0.95, ...)
```

odds.ratio.multi

Arguments

х	orginal data set (matrix or data frame)
outcome	(vector of) outcomes
oddsRatioCol	columns to use for calculating OR (defaults to $colnames(X)$)
level	rejection level for the CI (defaults to 0.95 or 5%)
	additional parameters to pass to odds.ratio.table

Value

Returns a data frame with variable names as row names and ln(OR) and OR statistics as columns:

Log.Odds.Ratio	ln(odds ratio)
StdError	standard error[ln(odds ratio)]
z.value	z-score of ln(odds ratio)
Prz	probability of z.value exceeeding the significance level
Log.CI.Lower	lower confidence interval boundary of ln(odds ratio)
Log.CI.Upper	upper confidence interval boundary ln(odds ratio)
Odds.Ratio	odds ratio
CI.Lower	lower confidence interval boundary of odds ratio
CI.Upper	upper confidence interval boundary of odds ratio
Validity	statistical significance marker ('*' = valid)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.multi Odds ratio statistics for (primarily) numerical variables

Description

Generates from a data frame with row-wise outcomes a comprehensive odds ratio data frame that includes the unadjusted and adjusted odds ratios (OR) and confidence intervals (CI) for OR, mean (exponential) and standard (ln) logistic univariate model errors

Usage

odds.ratio.multi(glmFit, level = 0.95)

Arguments

glmFit	fitted (GLM) model
level	rejection level for the CI (defaults to 0.95 or 5%)

Value

Returns a data frame with variable names as row names and OR and OR statistics as columns:

Odds.Ratio	odds ratio
Std.Error	standard error[ln(odds ratio)]
CI.Lower	lower confidence interval boundary of odds ratio
CI.Upper	upper confidence interval boundary of odds ratio
Validity	statistical significance marker ('*' = valid)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.num Odds ratio statistics for (primarily) numerical variables

Description

Generates from a data frame with row-wise outcomes a comprehensive odds ratio data frame that includes the unadjusted and adjusted odds ratios (OR) and confidence intervals (CI) for OR, mean (exponential) and standard (ln) logistic univariate model errors

Usage

```
odds.ratio.num(x, outcome, oddsRatioCol = colnames(x), level = 0.95)
```

Arguments

х	orginal data set (matrix or data frame)
outcome	(vector of) outcomes
oddsRatioCol	columns to use for calculating OR (defaults to $colnames(X)$)
level	rejection level for the CI (defaults to 0.95 or 5%)

Value

Returns a data frame with variable names as row names and OR and OR statistics as columns:

Odds.Ratio	odds ratio
Std.Error	standard error[ln(odds ratio)]
CI.Lower	lower confidence interval boundary of odds ratio
CI.Upper	upper confidence interval boundary of odds ratio
Validity	statistical significance marker ('*' = valid)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.stat

Combine uni- and multivariate odds ratio statistics into one data frame

Description

Merges a univariate odds ratio statistic with the multivariate one (calculated by odds.ratio.multi) and returns both as one data frame

Usage

```
odds.ratio.stat(glmFit, uniOddRatio, level = 0.95)
```

Arguments

glmFit	fitted (GLM) model
uniOddRatio	(a data frame of) univariate odds ratios
level	rejection level for the CI (defaults to 0.95 or 5%)

Value

Returns a data frame with variable names as row names and OR and OR statistics as columns:

Variable	Variable name	
Odds.Ratio.Uni	univariate odds ratio	
CI.Lower.Uni	lower confidence interval boundary of the univariate odds ratio	
CI.Upper.Uni	upper confidence interval boundary of the univariate ratio	
PrzUni	z score of the univariate odds ratio	
Validity.uni	statistical significance marker of the univariate odds ratio ('*' = valid)	
Odds.Ratio.Multi		
	multivariate odds ratio	
CI.Lower.Multi	lower confidence interval boundary of the multivariate odds ratio	
CI.Upper.Multi	upper confidence interval boundary of the multivariate odds ratio	
PrzMulti	z score of the multivariate odds ratio	
Validity.Multi	statistical significance marker of the multivariate multivariate odds ratio ('*' valid)	

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

©2016 NorthShore University HealthSystem

=

odds.ratio.summary Construct a standardized odds ratio table with statistics

Description

Standardize the ratio table created by odds.ratio.matrix to include only "IndPosCount", "IndPosPct", "IndPosOutcomePct", "Odds.Ratio", "CI.Lower", "CI.Upper", "Pr...z..", and "Validity"

Usage

odds.ratio.summary(oRi, x, statusCol)

Arguments

oRi	odds ratio matrix (output of odds.ratio.matrix)
x	event data frame
statusCol	outcome column

Value

Returns x without sparse rows

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.table Odds ratio statistics

Description

Generates from a contingency table a comprehensive odds ratio data frame that includes ln(odds ratio), confidence interval (CI) and p-value for ln(OR), OR proper, CI(OR) and the validity indicator (valid if 1 is not inside the CI).

Usage

Arguments

m	orginal data set (matrix or data frame)
level	rejection level for the CI (defaults to 0.95 or 5%)
lwr	column name of the lower boundary of the confidence interval (defaults to "lwr")
upr	column name of the upper boundary of the confidence interval (defaults to "upr")
oRat	column name of the log odds ratio (defaults to "Log.Odds.Ratio")

©2016 NorthShore University HealthSystem

212

Value

Returns a data frame with variable names as row names and odds ratio (OR) statistics as columns:

Log.Odds.Ratio	ln(odds ratio)
StdError	standard error[ln(odds ratio)]
z.value	z-score of ln(odds ratio)
Prz	probability of z.value exceeeding the significance level
Log.CI.Lower	lower confidence interval boundary of ln(odds ratio)
Log.CI.Upper	upper confidence interval boundary ln(odds ratio)
Odds.Ratio	odds ratio
CI.Lower	lower confidence interval boundary of odds ratio
CI.Upper	upper confidence interval boundary of odds ratio
Validity	statistical significance marker ('*' = valid)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

percent.NA.col percentage of NAs in each column

Description

percentage of NAs in each column

Usage

```
percent.NA.col(x)
```

Arguments

x matrix or data frame

Value

Returns a 1 x ncol(x) matrix or data frame with percentages of NAs in x by column

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

pos.stat

pos.stat

Description

For each specified element of the input data frame, computes for count and percentage of designated "positive" values, the # of positive outcomes, and the designated "positive" value of the element.

Usage

```
pos.stat(x, xNames, outcome, posCountMap, posOutcome = 1)
```

Arguments

х	orginal data set (matrix or data frame)
xNames	columns of x used in the calculation of statistics
outcome	name of column of x contating the output
posCountMap	map of desifganted "positive" values by parameter
posOutcome	designated outcome of interest (defaults to 1)

Value

Returns a data frame whose columns contain:

IndPosCount	# of elements of x whose value is designated "positive"
IndPosPct	percentage of "positive" parameter values as a fraction of total
IndPosOutcomePct	
	percentage of "positive" parameter values that correspond to positive outcomes in x
PosInd	designated "positive" value for each parameter

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

percent.NA.col,11
pos.stat,12

O2016NorthShore University HealthSystem

References

- [1] Peter C. Austin and Jack V. Tu. "Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality". In: Journal of Clinical Epidemiology 57 (2004), 1138:1146. URL: http://scholar.google.com/ scholar_url?hl=en&q=http://uncwddas.googlecode.com/files/ article2.pdf&sa=X&scisig=AAGBfm1boy8t65iA3pQUDj39ob3C2r8UtQ& oi=scholarr.
- [2] Rollin Brant. Biostatistics II. Mar. 24, 2004. URL: http://www.stat. ubc.ca/~rollin/teach/643w04/lec/.
- [3] Aran Canes. "Identifying superutilizers in the Medicaid population: A simple and powerful technique". In: *Predictive Analytics World for Healthcare*. Boston, MA, Oct 6-7, 2014.
- [4] Scott Chacon. Pro Git (Expert's Voice in Software Development). 2009. URL: http://git-scm.com/book.
- [5] D.R. Cox. "Regression Models and Life-Tables". In: Journal of the Royal Statistical Society. Series B (Methodological) 34 (1972), 187:220.
- Chris J Date. An introduction to database systems (7. ed.) Addison-Wesley-Longman, 2000, pp. I–XXII, 1–938. ISBN: 978-0-201-68419-3.
- [7] D. Diez. Survival Analysis in R. June 2013. URL: https://www. openintro.org/download.php?file=survival_analysis_in_R& referrer=/stat/surv.php.
- [8] A. Doyle. The Complete Sherlock Holmes (Knickerbocker Classics). Race Point Publishing, 2013. ISBN: 8601404432897.
- [9] Vincent Driessen. A successful Git branching model. Jan. 5, 2010. URL: http://nvie.com/posts/a-successful-git-branching-model/.
- [10] A. Elixhauser et al. "Comorbidity Measures for Use with Administrative Data". In: *Medical Care* 1 (1998), 8:27.
- G.M. Fitzmaurice, N.M. Laird, and J.H. Ware. Applied Longitudinal Analysis. Wiley Series in Probability and Statistics. Wiley, 2012.
 ISBN: 9781118551790. URL: http://books.google.com/books?id= OexUN1yFBHEC.
- [12] John Fox and Sanford Weisberg. Cox proportional-hazard regression for survival data in R. Feb. 23, 2011. URL: http://socserv.mcmaster. ca/jfox/Books/Companion/appendix/Appendix-Cox-Regression. pdf.
- [13] B. French et al. Regression modeling of longitudinal binary outcomes with outcome-dependent observation times. May 13, 2014. URL: https: //dbe.med.upenn.edu/biostat-research/sites/files/facultyfiles/ french_cambridge_talk.pdf.
- G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 2013. ISBN: 9781421407944. URL: http://books.google.com/books? id=X5YfsuCWpxMC.
- D.W. Hosmer, S. Lemeshow, and R.X. Sturdivant. Applied Logistic Regression. Wiley Series in Probability and Statistics. Wiley, 2013.
 ISBN: 9780470582473. URL: http://books.google.com/books?id= 64JYAwAAQBAJ.
- [16] Max Kuhn. "Building Predictive Models in R Using the caret Package". In: Journal of Statistical Software 28.5 (Nov. 2008), pp. 1–26. ISSN: 1548-7660. URL: http://www.jstatsoft.org/v28/i05.
- [17] James Leeper and UCLA. Choosing the Correct Statistical Test. 2014. URL: http://www.ats.ucla.edu/stat/mult_pkg/whatstat/ choosestat.html.
- [18] Zhiguo Li Li et al. "Failure event prediction using the Cox proportional hazard model driven by frequent failure signatures". In: *IIE transactions* 39 (2007), 303:315. URL: http://mpac.engr.wisc.edu/pdf/ paper27.pdf.
- [19] K.-Y. Liang and S. Zeger. "Longitudinal Data Analysis Using Generalized Linear Models". In: *Biometrika* (1986), 13:22.
- [20] Scott Mitchell. The Eight Commandments of Source Code Control. Nov. 8, 2008. URL: http://scottonwriting.net/sowblog/archive/ 2008/11/13/163320.aspx.
- [21] D.C. Montgomery, E.A. Peck, and G.G. Vining. Introduction to Linear Regression Analysis. Wiley Series in Probability and Statistics. Wiley, 2012. ISBN: 9780470542811. URL: http://books.google.com/books? id=0yR4KUL4VDkC.
- [22] D.S. Moore. Essential Statistics. W. H. Freeman, 2010. ISBN: 9781429931595.
 URL: http://books.google.com/books?id=Pf8jAAAAQBAJ.
- [23] NIST. NIST/SEMATECH e-Handbook of Statistical Methods. Oct. 30, 2013. URL: http://www.itl.nist.gov/div898/handbook/index. htm.

- [24] NPR. The Secret Recordings of Carmen Segarra. Sept. 26, 2014. URL: http://www.thisamericanlife.org/radio-archives/episode/ 536/the-secret-recordings-of-carmen-segarra.
- [25] Therese Pigott. "A Review of Methods for Missing Data". In: Educational Research and Evaluation 7.4 (2001), 353:383. URL: http://www. stat.uchicago.edu/~eichler/stat24600/Admin/MissingDataReview. pdf.
- [26] Maja Pohar and Janez Stare. "Making relative survival analysis relatively easy". In: Computers in biology and medicine 37 (2007), 1741:1749.
 URL: http://www.pauldickman.com/cancerepi/handouts/handouts_survival/Pohar2007.pdf.
- [27] Maja Pohar Perme, Robin Henderson, and Janez Stare. "An approach to estimation in relative survival regression". In: *Biostatistics* 10.1 (2009), 136:146. URL: http://biostatistics.oxfordjournals.org/ content/10/1/136.full.pdf+html.
- [28] W.H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, 2007. ISBN: 9780521880688.
 URL: http://apps.nrbook.com/empanel/index.html#.
- [29] Rachel Schutt and Cathy O'Neil. Doing Data Science: Straight Talk from the Frontline. O'Reilly Media, Inc., 2013. ISBN: 1449358659, 9781449358655.
- [30] D. Strauss et al. "An analytical method for longitudinal mortality studies". In: *Journal of insurance medicine* (2000), 217:225.
- [31] D. Taeger and S. Kuhnt. Statistical Hypothesis Testing with SAS and R. Wiley, 2014. ISBN: 9781118762608. URL: http://books.google. com/books?id=mJaOAgAAQBAJ.
- [32] W.M. Thorburn. The Myth of Occam's Razor. University Press, 1918. URL: http://books.google.com/books?id=1xP8NAACAAJ.
- [33] L.N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1997. ISBN: 9780898719574. URL: http://books.google.com/books?id=JaPtxOytY7kC.
- [34] S. Tzu and L. Giles. The Art of War by Sun Tzu Special Edition. The Art of War - Special Edition. El Paso Norte Press. ISBN: 9781934255551. URL: http://books.google.com/books?id=T0HQ0QVKWz8C.
- [35] UCLA. What statistical analysis should I use? Statistical analyses using Stata. 2014. URL: http://www.ats.ucla.edu/stat/stata/ whatstat/whatstat.htm#hsb.

- [36] Joachim Vandekerckhove, Dora Matzke, and Eric-Jan Wagenmakers. Model Comparison and the Principle of Parsimony. 2014. URL: https: //http://www.cidlab.com/prints/vandekerckhove2014model. pdf.
- [37] X.H. Zhou, D.K. McClish, and N.A. Obuchowski. Statistical Methods in Diagnostic Medicine. second. Wiley Series in Probability and Statistics. Wiley, 2011. ISBN: 9780470183144. URL: http://books.google. com/books?id=NWGUtAd0T8kC.

Index

 2×2 contingency table, 37 $F_1, 29$ F_1 score, 73 z-statistic, 110 z-test pooled two-proportion, 109 approximation accuracy, 22 augmented matrix, 15 binning categorical variables, 42 blood utilization, 41 boundary impenetrable, 27 Central Limit Theorem, 15 chronic obstructive pulmonary disorder, 31 classification, 7, 12 code development cooperative, 96 incremental, 96 code repositoty central, 96 code review, 99 condition number, 31 confidence interval, 19 COPD (chronic obstructive pulmonary disorder), 31 Cox proportional hazard model, 73cumulative distribution function, 110

database internal shared, 85 sandbox, 85

discrete-values function, 22 ejection fraction, 40 exogeneity, 14 extended markup, 85 fallback sequence, 29 generalized estimating equations, 73goodness-of-fit, 16 Heart Failure End-of-life, 29 histogram, 30 homoscedasticity, 14 hospital admission, 42 Lift, 81 logistic regression model, univariate, 46 Matthews' correlation coefficient, 29, 73 maximum likelihood method, 23 model test backward, 76 forward, 76 last available period, 77 mid history, 76 mortality risk, 79 Newton-Raphson method, 23 nomenclature of input variables, 31non-singular matrix, 31 numerical instability, 31 numerically singular matrix, 31

Occam's razor, 65

odds ratio, 37 one-vs.-the-rest algorithm, 41 Open Source, 23 outcome of interest, 23 outlier, 30 outliers, 105 partial likelihood function, 27 peer review, 99 post-processing, 85 predictive analytics, 7, 12, 96 predictor variables, 14 proportion, 109 regression, 7, 12 linear, 14 log-linear-log, 15 $\log - \log, 15$ logistic, 12 model, 22 loglinear , 15residuals, 14 revision control, 96 Git, 96 repository, 96 ROC (receiver operating characteristic) curve, 78 semiparametric model, 25 server, 85

sigmoid function, 22 small perturbation, 31 sparse data, 41 survival analysis, 27 Cox analysis, 25 Cox proportional hazard model, 25 function, 26 probability, 25 time, 25 suvival Cox analysis model, 79 True negative rate, 73 True positive rate, 73 unit testing, 83 variable candidate predictor, 30 dependent, 14 independent, 14 input, 85 selection, 30 automated, 30 transformation, 64 variance finite, 14