Analytical Standards for Regression-based Predictive Analytics : Methodologies, Naming Conventions and Coding Practices

Daniel Chertok, Ari Robicsek Clinical Analytics Team ©NorthShore University HealthSystem

6 th February, 2020

Abstract

This document proposes a set of methodology and programming standards for the Clinical Analytics team. It is intended as a set of guidelines that will be developed over time as the needs of the team evolve. Guidelines include a review of statistics, survival analysis, general programming techniques, naming conventions, R coding practices and a general approach to tackling most common types of applied predictive analysis handled by the team.

Contents

List of Tables

Listings

1 Introduction

Predictive modeling tasks handled by Clinical Analytics fall into one of two categories: classification and regression . Classification answers the question, "What group of patients does this individual belong to?" Its outcome is a categorical - quite often, binary - variable. Regression answers the question, "How much or how many?" Its outcome is a cardinal variable. While the outcomes of these two types of mathematical models are different, the underlying methodologies are very similar and are considered in Sections [3.3](#page-19-0) and [3.2.](#page-13-0) A combination approach may be appropriate for problems requiring the development of quantification metrics for events of interest: first, identify (or classify) potential outcomes, then evaluate the impact of each outcome separately. In this case, a classification algorithm should be followed with a regression; more often than not, quantification of only the positive outcome is of interest to us.

An important - though sometimes overlooked - step in streamlining the research and development (R&D) methodology is agreeing on standardized terminology for the research process. A well-developed glossary of terms (see Section [2\)](#page-8-0) can assure that identical tasks or processes are described in identical terms, a concept similar to "data integrity" as defined by the principles of database design [\[6\]](#page-215-0).

Anecdotal evidence suggests that a data scientist (whatever this term currently entails) spends 90% of her time scrubbing the data [\[29\]](#page-217-0) and only 10% of it doing what she learned in her school's Advanced Scientific Fortunetelling program. Like an experienced cook who appreciates the role of quality ingredients in meal preparation, a sensible data scientist may be able to achieve good results by simply ensuring that the data ingested into her algorithm is clean. Agreed-upon procedures (AUP) for data cleansing and storage are covered in [3.5](#page-28-0) and [5.1.](#page-84-1)

Consistent, scalable development of reliable and reusable software is an important part of introducing the developed methodologies into production. A collection of good coding practices relevant to predictive analytic development is presented in Section $6.$ A good foundation for developing robust code and assuring business continuity includes

- proper revision control practices (6.1) ,
- accessible and consistently named code repositories and development sandboxes (6.2) and
- readable and transparent code modules $(6.4, 6.5)$ $(6.4, 6.5)$ $(6.4, 6.5)$ in R $(6.5.1)$.

Once an algorithm has been prototyped and implemented to the developers' satisfaction, the responsibility for putting it into everyday use it shifts to the production team. The process of testing, validation and verification can be drawn out and contentious unless the rules of the game are well defined in advance. Efficient practices for lightening the burden on both the original developers and the QA team are described in Section [6.6.](#page-102-0)

Finally, once the results have been validated, consistent and easy to understand presentation can facilitate their acceptance by the intended audience. Appropriate standards are covered in Section [4.](#page-82-0)

Examples contained in this manual are based on real data, however, in order to protect potentially sensitive information, the numbers have been modified and the names of the entities involved obscured where deemed necessary.

2 Preferred terminology

Nomenclature of terms

indicator variable

a variable with only two outcomes: 0 and 1, FALSE and TRUE [29,](#page-28-2) [106](#page-105-1)

binary variable

see [indicator variable](#page-8-1)

dummy variable

see [indicator variable](#page-8-1)

categorical variable

a variable with two or more outcomes whose values cannot be meaningfully converted into comparable numbers, e.g., ethnicity, gender, geographical region see also [nominal variable](#page-0-0) & [ordinal variable,](#page-8-2) [9,](#page-8-3) [29,](#page-28-2) [106,](#page-105-1) [107,](#page-106-0) [108](#page-107-0)

ordinal variable

a [categorical variable](#page-8-4) whose values can be meaningfully ordered but not quantitatively compared, e.g., stage of cancer, education level, degree of satisfaction [29,](#page-28-2) [106,](#page-105-1) [107,](#page-106-0) [108](#page-107-0)

interval variable

a discrete variable whose values are equidistant and the zero is arbitrarily set, e.g., IQ scores, number of hospital admissions, number of children in a family see also [continuous variable,](#page-8-5) [29,](#page-28-2) [106,](#page-105-1) [107,](#page-106-0) [108](#page-107-0)

continuous variable

a variable whose values can take on any (real) number, e.g., body mass index, systolic blood pressure, hemoglobin [29](#page-28-2)

Type I error

an incorrect rejection of the null hypothesis see also [false positive](#page-9-0)

t-test

Student's t-test [106,](#page-105-1) [107](#page-106-0)

true positive

an event correctly classified as having an outcome of interest [10,](#page-9-1) [11](#page-10-4)

false positive

an event incorrectly classified as having an outcome of interest see also [Type I error,](#page-8-6) [10,](#page-9-1) [11,](#page-10-4) [79](#page-78-1)

true negative

an event correctly classified as not having an outcome of interest [11](#page-10-4)

false negative

an event incorrectly classified as not having an outcome of interest see also [Type II error,](#page-0-0) [10,](#page-9-1) [11,](#page-10-4) [79](#page-78-1)

positive predictive value

```
also precision
true positives}}{\text{number of predicted positives}}true positives}}{\text{number of true positives} + \text{number of}}true positivesfalse positives}}11,80,82
```
relative survival probability

survival probability of a group under consideration relative to that of a benchmark group, e.g., survival probability of cancer patients relative to the general population of the same age [27](#page-26-0)

survival analysis

a branch of statistics (or, more broadly, applied mathematics) concerned with predicting failure events among a given population or group of technical objects [25](#page-24-1)

time since first diagnosis

interval of time between the first recorded or implied diagnosis assigned to the patient and the time t of interest (e.g., current time) 27

true positive rate

also sensitivity, hit rate, recall $TPR = \frac{number\ of\ true\ positives}{number\ of\ false\ negatives} = \frac{number\ of\ true\ positives}{total\ positive\ outcomes}$ total positive outcomes [11,](#page-10-4) [73,](#page-72-0) [78,](#page-77-2) [79,](#page-78-1) [80](#page-79-1)

specificity

```
also true negative rate
true negative}}{\text{false positive} + \text{true negative}} = \frac{\text{true negative}}{\text{total negative outcomes}}73,78,79,82,84
```
false positive rate

also fallout $FPR = \frac{\text{false positive}}{\text{false positive} + \text{true negative}} = \frac{\text{false positive}}{\text{total negative outcomes}} 11$ $FPR = \frac{\text{false positive}}{\text{false positive} + \text{true negative}} = \frac{\text{false positive}}{\text{total negative outcomes}} 11$ $FPR = \frac{\text{false positive}}{\text{false positive} + \text{true negative}} = \frac{\text{false positive}}{\text{total negative outcomes}} 11$ $FPR = \frac{\text{false positive}}{\text{false positive} + \text{true negative}} = \frac{\text{false positive}}{\text{total negative outcomes}} 11$ $FPR = \frac{\text{false positive}}{\text{false positive} + \text{true negative}} = \frac{\text{false positive}}{\text{total negative outcomes}} 11$ $FPR = \frac{\text{false positive}}{\text{false positive} + \text{true negative}} = \frac{\text{false positive}}{\text{total negative outcomes}} 11$

receiver operating characteristic (ROC) curve

A curve that visualizes the accuracy of a classification algorithm as a relationship between [true positive rate](#page-9-5) and [false positive rate](#page-10-5) [4,](#page-3-0) [11,](#page-10-4) [77,](#page-76-2) [80](#page-79-1)

lift curve

A curve that visualizes the relationship between [true positive rate](#page-9-5) and the fraction of the population targeted by the response solicitation campaign. It is a variation on the [receiver operating characteristic](#page-10-2) [\(ROC\) curve](#page-10-2) [4,](#page-3-0) [80,](#page-79-1) [81](#page-80-2)

lift

Lift $=\frac{\%$ of outcomes of interest in the population selected by the model [81,](#page-80-2) [82](#page-81-1)

 F_1 score

```
positive predictive valuetrue positive rate4,29,69,71,73,74,78,80,84
```
Matthews' correlation coefficient

 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times FN \times (TN + FN) \times (TN + FN)}}$ $\frac{TP \times TN - FP \times FN}{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}$, where TP is the number of [true positives](#page-9-2), TN is the number of [true negatives](#page-9-4), FP is the number of [false positives](#page-9-0) and FN is the number of [false negatives](#page-9-3) [4,](#page-3-0) [29,](#page-28-2) [69,](#page-68-2) [71,](#page-70-2) [73,](#page-72-0) [74,](#page-73-1) [78,](#page-77-2) [80,](#page-79-1) [84](#page-83-2)

interaction term

also cross term

in a (generalized) linear model, a nonlinear term of the form $\prod_{i=1}^{m} X_i$, where X_i is the *i*-th predictive variable, m the order of nonlinearity; the simplest nontrivial $(m = 2)$ case being $X_1 \times X_2$ [68,](#page-67-1) [69](#page-68-2)

3 Methodology

3.1 General approach

An outline of a general approach to solving an analytical problem is presented in Fig. [3.1.](#page-12-0)

As mentioned in Section [1,](#page-6-0) the majority of predictive analytic problems can be solved by employing one of two wide types of forecasting method-ologies: regression and classification. Regression^{[1](#page-11-2)} should be used when the output variable^{[2](#page-11-3)} is interval or continuous, i.e., can take on any permissible value inside an interval (which may include the whole real axis). Examples of this type of problem include predicting:

- 1. a lab test result based on the patient's demographics, clinical history and other lab tests;
- 2. the number of admissions based on the previous history and calendar data;
- 3. patient management cost based on patient's data.

Logistic regression is one of the most widely practically used classification algorithms. It is easy to implement^{[3](#page-11-4)}, intuitive and can be made sufficiently accurate for most uncomplicated modeling tasks. Mathematically similar to linear regression, it^{[4](#page-11-5)} can (and often should) be used when the output variable is an indicator, binary, categorical, nominal or ordinal. Examples of this type of problem include

- 1. predicting patient's risk of mortality, admission or readmission based on demographic and clinical data;
- 2. classifying the severity of a patient's condition based on available clinical data and history;
- 3. identifying those patients among high risk population who are most likely to respond to intervention [\[3\]](#page-215-1).

¹Or another appropriate fitting technique

²Scalar, i.e., single-valued or vector, i.e., multivalued.

³In fact, it is commonly implemented in many statistical packages and programming languages, including R.

⁴Or another appropriate classification technique.

Figure 3.1: A generic algorithm for proceeding with an analytical project within the framework of Clinical Analytics.

3.2 Regression

A regression problem answers the question "How much output quantity or how many items or events can be generated as a result of the process under investigation?". The solution of a regression problem can be found as a result of an optimization algorithm on a measure of the difference between predicted and actual outputs. The simplest model in this case, linear regression, assumes that

- there is no (measurement) error in the values of predictors and the dependent variable;
- predictor variables are
	- (statistically) independent;
	- linearly independent (not collinear), i.e., the matrix of predictors has full rank (this is separate from the condition above);
- a linear relationship of the type

$$
Y_i = \beta_0 + \sum_{i=1}^{M} X_{ij} \beta_j , i = \overline{1, N} , \qquad (3.1)
$$

where N is the number of observations and M is the number of predictive variables, exists between the predictors and the output variable;

 residuals, or errors, i.e., differences between observed and predicted values of the dependent variable

$$
\epsilon_i = Y_i - \hat{Y}_i \,, \tag{3.2}
$$

where \hat{Y}_i , $i = \overline{1, N}$ are the predicted and Y_i , $i = \overline{1, N}$ are the actual values of the dependent variable, are

- distributed with a zero mean (exogeneity);
- homoscedastic (of constant variance);
- of finite variance;
- statistically independent of one another and of the independent variables.

It is sometimes assumed that residuals are normally distributed, i.e. $\epsilon \sim$ $\mathcal{N}(0, \sigma^2)$, however, this assumption may be relaxed through the application

of the Central Limit Theorem if the number of observations is sufficiently large (exceeds the proverbial $N = 30$). In this simplest case, an analytical solution exists and can be found using readily available formulas. A more complex problem can be reduced to linear regression if the functional form of relationship between the predictors and the output is known apriori, e.g., by taking the logarithm of the outcome variable, both sides of the equation or a combination of both (loglinear regression, log-log regression or log-linear-log regression).

Let us assume that a linear relationship between the predictors and the dependent variable described by (3.1) does exist. In the most general case, X is an $N \times M$ matrix of predictive variables, β is an $M \times 1$ vector and β_0 is a scalar:

$$
X = \begin{bmatrix} x_{11} & \cdots & x_{1M} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{NM} \end{bmatrix},
$$
(3.3)

$$
\beta = \begin{bmatrix} 1 \\ \vdots \\ \beta_M \end{bmatrix}, \qquad (3.4)
$$

$$
Y = X\beta + \beta_0 \tag{3.5}
$$

Instead of $(3.3 - 3.5)$ $(3.3 - 3.5)$ $(3.3 - 3.5)$, we can consider an augmented $N \times (M + 1)$ matrix X_* and $(M + 1) \times 1$ vector β_* that together form an equivalent system of equations:

$$
X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1M} \\ \vdots & \ddots & \vdots & \vdots \\ 1 & x_{N1} & \cdots & x_{NM} \end{bmatrix}, \qquad (3.6)
$$

$$
\beta_* = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}, \qquad (3.7)
$$

$$
Y = \begin{bmatrix} \beta_M \end{bmatrix} \tag{3.8}
$$

Observe that the left hand side of (3.5) is exactly the same as the left hand side of [\(3.8\)](#page-14-1) once we set $a_0 \equiv b$. For the ease of exposition we shall drop subindex $*$ from X_* and β_* and continue to refer to these augmented variables as X and β , i.e.,

$$
Y = X\beta. \tag{3.9}
$$

The solution of (3.9) can be found in the form of

$$
\beta = (X^T X)^{-1} X^T y , \qquad (3.10)
$$

where X^T is the transposed $X(X_{ij}^T = X_{ji})$, provided that $(X^T X)^{-1}$ exists (see, e.g., [\[21\]](#page-216-1))

An example of a fitted curve is presented in Fig. [3.2](#page-15-0)

Linear regression illustration

Figure 3.2: Linear regression: an illustration

A common metric for assessing the quality (or goodness-of-fit) of linear regression is its *coefficient of determination* R^2 , defined as

$$
R^{2} = 1 - \frac{Var(\epsilon)}{Var(y)} = 1 - \frac{\frac{1}{N} \sum_{i=1}^{N} \epsilon_{i}^{2}}{\frac{1}{N} \sum_{i=1}^{N} (y_{i} - \overline{y})^{2}},
$$
(3.11)

since we assume $E(\epsilon) = 0$. The coefficient of determination quantifies what fraction (percentage) of the variation of the dependent variable, y, can be explained by the variation of the independent variable(s), x (via x 's linear relationship to y).

A general approach to attacking regression problems is presented in Fig. [3.3.](#page-16-0) In R an ordinary linear regression model can be built using function lm.

Figure 3.3: Decision tree for linear regression problems.

Predictive variable	Outcome	Predictive variable	Outcome	Predictive variable	Outcome
	-0.1322691	8	20.6916235	15	36.6246546
$\overline{2}$	5.9182166	9	21.8789068	16	32.7753320
3	2.8218569	10	19.4730581	17	34.9190487
4	16.9764040	11	30.5589058	18	41.7191811
5	12.6475389	12	26.9492162	19	43.1061060
6	8.8976581	13	23.8937971	20	43.9695066
7	17.4371453	14	17.9265006		

As an example, consider the data presented in Table [3.1.](#page-17-0)

Table 3.1: Example: Logistic regression

The corresponding R code is presented in Listing [3.1.](#page-17-1)

```
\textbf{set}. seed (1)x \leftarrow 1:20xR \leftarrow \text{rnorm}(1:20)y \leq -2 * x + 1 + 5 * xR\text{lm} <\!\!\!-\text{ lm}(\begin{array}{c c c c c c}\text{m} & \text{s} & \text{m} \end{array})\text{coef} \leftarrow \text{coef}(\text{lm})yHat \leftarrow x \ast coef [2] + coef [1]
plot (x, y, \text{ main="Linear\_regression}\_illustration", col=' magenta ' )
abline (\text{coeff}=\text{coeff}, \text{col}=\text{blue})
points( x, yHat, type='p', col='blue') )for (i \text{ in } 1: length (x) ) \{segments (x[i], yHat[i], x[i], y[i], lty='dotted',col='red', \text{ pch=16} )}
a \leq sprintf ( "%.2f", coef [2]
b \leftarrow sprintf ( "%.2 f", coef [1] )
text ( 5, 35, bquote ( paste ( hat ( y ), "=", . (a), "x-+"
    , (b) ) )text (-5, 32, bquote(-paste(-")y = " , hat(-y -), " +",epsilon ) )R2 \leq - sprintf ( "%.2f", summary(lm)$r.squared)
text ( 5, 29, bquote ( paste ( \mathbb{R}^2, "=", . (R2) ) )
```
 $summary$ (lm) $\text{confint}(\text{lm})$

Listing 3.1: Example: R code for linear regression.

producing the output in Listing [3.2.](#page-18-0)

Call: $lm (formula = y \tilde{x} x)$ Residuals: Min 1Q Median 3Q Max -12.4038 -2.5841 0.9373 2.4165 7.7252 Coefficients: Estimate Std. Error t value $Pr(>|t|)$ $(Intercept)$ 0.8195 2.1579 0.38 0.709 x 2.1079 0.1801 11.70 7.56e−10 *** −−− Signif. codes: $0 \ \ \text{***}$ $0.001 \ \ \text{***}$ $0.01 \ \ \text{**}$ $0.01 \ \ \text{**}$ $0.05 \ \ \text{''}$. 0.1 ' ' 1 Residual standard error: 4.645 on 18 degrees of freedom Multiple R-squared: 0.8838, Adjusted R-squared: 0. 8 7 7 4 F-statistic: 136.9 on 1 and 18 DF, p-value: $7.56e-10$ 2.5 % 97.5 % $(Intercept) -3.714035 5.353106$ x 1.729458 2.486368

Listing 3.2: Example: R linear regression model summary output.

It follows from Listing [\(3.2\)](#page-18-0) that only the slope estimate is statistically significantly different from 0 at the 95% level ($p < 0.05$). The 95% confidence interval for the intercept is $[-3.71; 5.35]$, and for the slope it is $[1.73; 2.49]$. The coefficient of determination $R^2 = 0.88$ indicates a very good fit between the data points and the developed linear model which has the form[1](#page-18-1)

 $\hat{y} = 0.8195 + 2.1079x,$ (3.12)

¹The accuracy of coefficient estimates is lower than 0.5×10^{-4}

or, if we accept the null hypothesis concerning the intercept $(\beta_0 = 0)$,

$$
\hat{y} = 2.1079x \,. \tag{3.13}
$$

With the benefit of foresight^{[1](#page-19-1)}, we already presented an illustration of (3.12) in Fig. [3.2.](#page-15-0)

3.3 Using logistic regression for classification problems

A classification problem answers the question "What group does this object belong to?". The answer can depend on the available data as described in Fig. [3.4.](#page-20-0) Quite often, the easiest-to-implement method is preferable since it can be deployed with the least effort and does not require infrastructure and process adjustments. For practical purposes, logistic regression and its modifications often

- represent a good trade-off between cost and accuracy,
- make the contribution of different explanatory variables easy to understand and
- yield results that easy to interpret,

and therefore should be implemented whenever possible.

¹Authors of predictive analytics literature have frequently enjoyed this advantage $[8]$.

The mathematical rationale behind logistic regression is based on map-

ping the probability domain onto the real axis as outlined below:

$$
Y|X \sim B(1,p) \tag{3.14}
$$

$$
p(x) = P(Y|X) \tag{3.15}
$$

$$
logit(p(x)) = \ln \frac{p(x)}{1 - p(x)}, p \in [0; 1]. \tag{3.16}
$$

(3.17)

In applying transformation [\(3.16\)](#page-21-1), one must effectively hold out hope of approximating a discrete-valued function with a smooth sigmoid function defined by (3.16) as illustrated in Fig [3.5.](#page-21-0)

Figure 3.5: Logistic regression fit: an illustration

The accuracy of approximation (3.18) depends on the separability of two sets, $Y = 0$ and $Y = 1$.

Logistic regression model corresponding to (3.16) has the form

$$
logit(p(x)) = X\beta, logit(p(x)) \in [-\infty, \infty], \qquad (3.18)
$$

however, coefficients β cannot be found using linear regression techniques described in Section [3.2](#page-13-0) since the observed outcome of interest $(p = 1)$ corresponds to positive infinity in the transformed range of [\(3.18\)](#page-21-2) and the remainder of cases $(p = 0)$ correspond to negative infinity. The solution of (3.18) is found using the *maximum likelihood method* [\[15\]](#page-216-2). Observe from [\(3.16\)](#page-21-1) that

$$
p(x) = \frac{1}{1 + e^{-X\beta}}.
$$
\n(3.19)

The likelihood of obtaining outcome y_i given the value of the predictor variable x_i is $p(x_i)$

$$
P(y_i|x_i) = p(x_i)^{y_i} [1 - p(x_i)]^{1 - y_i}, \qquad (3.20)
$$

and the total likelihood of obtaining a specific sequence of outcomes is

$$
l(\beta) = \prod_{i=1}^{N} p(x_i)^{y_i} [1 - p(x_i)]^{1 - y_i}, \qquad (3.21)
$$

or, taking the natural logarithm of both sides for convenience,

$$
L(\beta) = \ln [l(\beta)] = \sum_{i=1}^{N} \{y_i \ln p(x_i) + (1 - y_i) \ln [1 - p(x_i)]\}, (3.22)
$$

The maximum of $L(\beta)$ can be found by differentiating [\(3.22\)](#page-22-0) with respect to β_i and setting the resulting equations to 0:

$$
\frac{\partial L(\beta)}{\partial \beta_i} = \sum_{i=1}^{N} x_i \left[y_i - p(x_i) \right] = 0. \tag{3.23}
$$

The solution of [\(3.23\)](#page-22-1) can be found by standard numerical solution techniques, e.g., the Newton-Raphson method [\[28\]](#page-217-1). Fortunately, Open Source and commercial statistical software has logistic regression algorithms efficiently implemented, so that implementing the above-mentioned algorithm is not a concern for a typical user.

As an example, consider a classification problem described by Table [3.2.](#page-23-0)

Predictive variable	Outcome	Predictive variable	Outcome	Predictive variable	Outcome
		8		15	
2		9		16	
3		10		17	
4		11		18	
5		12		19	
6		13		20	
		14			

Table 3.2: Example: Logistic regression

The corresponding R code is presented in Listing [3.3.](#page-23-1)

 $x < -1:20$ $y \leftarrow c(\text{rep}(0, 6), 1, \text{rep}(0, 4), \text{rep}(1, 6), 0, 1, 1)$ $glm \leftarrow glm(y \times x, family=binomial(link='logit'))$ $summary(glm)$ $\text{confint}(\text{glm})$

Listing 3.3: Example: R code for logistic regression.

producing the output in Listing [3.4.](#page-23-2)

```
C all :
glm (formula = y \tilde{x}, family = binomial (link = "logit")\left( \right)Deviance Residuals:
   Min 1Q Median 3Q Max
-2.1815 -0.5596 -0.2371 0.6403 1.8960Coefficients:
           Estimate Std. Error z value Pr(>|z|)(Intercept) -4.0972 1.7830 -2.298 0.0216 *x 0.3544 0.1476 2.401 0.0163 *
−−−
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
  0.1 ' ' 1
```

```
(Dispersion parameter for binomial family taken to be
   1 )
   Null deviance: 27.526 on 19 degrees of freedom
Residual deviance: 16.707 on 18 degrees of freedom
AIC: 20.707
Number of Fisher Scoring iterations: 5
Waiting for profiling to be done...
                2.5 \% 97.5 \%(Intercept) -8.6739420 -1.2930813x 0.1207693 0.7329936
```
Listing 3.4: Example: R logistic regression model summary output.

It follows from Listing [\(3.4\)](#page-23-2) that both the intercept and slope estimates are statistically significantly different from 0 at the 95% level ($p < 0.05$). The 95% confident interval for the intercept is [−8.67; −1.29], and for the slope it is $[0.12; 0.73]$ $[0.12; 0.73]$ $[0.12; 0.73]$. The resulting model has the form¹

$$
logit(\hat{p}(x)) = -4.0972 + 0.3544x , \qquad (3.24)
$$

and the probability estimate is

$$
\hat{p}(x) = \frac{1}{1 + e^{4.0972 - 0.3544x}}.
$$
\n(3.25)

As in Section [3.2,](#page-13-0) we already presented an illustration of [\(3.25\)](#page-24-3) in Fig. [3.5.](#page-21-0)

3.4 Survival modeling

A frequently asked question in healthcare analytics is: "What is the probability of survival for (at least) time t from now $(t_0 = 0)$ of an individual with specific conditions?" or, conversely, "What is the expected survival time of a given individual?". [Survival analysis](#page-9-7) is a form of regression that can help answer these questions. A standard procedure for evaluating survival probability, and, to some extent, expected survival time, is Cox survival analysis [\[12\]](#page-215-3), [\[18\]](#page-216-3), [\[27\]](#page-217-2). At the core of it is the semiparametric Cox proportional hazard model.

¹As in Section [3.2,](#page-13-0) the accuracy of coefficient estimates is lower than 0.5×10^{-4}

In the following analysis, we assume that an outcome of interest represents an irreversible state transition (e.g., alive to dead). The probability of an event of interest occurring before time t is

$$
P(t) = Pr(T \le t) = \int_0^t p(x) dx , \qquad (3.26)
$$

where T is the time of the event and $p(x)$ is the probability density of the (possibly unknown) distribution of such an event. The probability of an individual surviving until (at least) timet is termed the survival function and represents the complement of $P(t)$

$$
S(t) = Pr(T > t) = \int_{t}^{\infty} p(x)dx.
$$
 (3.27)

The rate of arrival of outcomes of at time t is equal to the instantaneous probability of an event at time t conditional upon surviving until that time and can be calculated as^{[1](#page-25-0)}

$$
h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}
$$

=
$$
\frac{dP(t)}{dt} \frac{1}{S(t)} = \frac{p(t)}{S(t)}.
$$
 (3.28)

In the Cox model, hazard rate $h(t)$ is regressed against a set of predictors X_i as

$$
h(t) = h_0(t)e^{\sum_{i=1}^{N} b_i x_i}, \qquad (3.29)
$$

where b_i is the weighting of x_i , the *i*-th of N explanatory variables. For the population of M individuals, (3.29) can be rewritten as

$$
h_i(t) = h_{i_0}(t)e^{\sum_{j=1}^N b_j x_{ij}}, i = \overline{1:N}, j = \overline{1:M}.
$$
 (3.30)

Taking the (natural) logarithm of both sides of [\(3.30\)](#page-25-2), we arrive at the equivalent of [\(3.18\)](#page-21-2):

$$
\ln \frac{h_i(t)}{h_{i_0}(t)} = \sum_{j=1}^{N} b_j x_{ij}, i = \overline{1:N}, j = \overline{1:M}.
$$
 (3.31)

The form of $h_{i_0}(t)$ is not formally specified; its shape is determined by empirical data in the training dataset giving rise to the unparametric portion

¹conditional probability

of the model.^{[1](#page-26-1)} The solution of (3.26) is delivered by the maximum of the partial likelihood function defined in [\[5\]](#page-215-4) as

$$
L_p = \prod_{i=1}^{N} \left[\frac{e^{x_i \beta}}{\sum_{j=1} N Y_{ij} e^{x_i \beta}} \right]^{\delta_i}, \qquad (3.32)
$$

$$
Y_{ij} = \begin{cases} 0, \text{if } t_j < t_i, \\ 1, \text{otherwise} \end{cases}, \tag{3.33}
$$

$$
\delta_i = \begin{cases} 0, \text{if event did not occur at time} t_i, \\ 1, \text{otherwise.} \end{cases}
$$
\n(3.34)

A widely accepted standard for survival analysis in R is the survival package [\[7\]](#page-215-5); a noteworthy extension of it that takes into account [relative](#page-9-8) [survival probability](#page-9-8) is relsurv [\[26\]](#page-217-3).

Two important variables to consider in survival analysis are [time since](#page-9-9) [first diagnosis](#page-9-9) and age. The former reflects the individual's "lifetime" measured with respect to others with the same group of conditions, the latter relates his or her expected risk of experiencing a negative outcome to that of the general population.

It is important to distinguish survival analysis, which is characterized by an impenetrable boundary between the sets with null and eventful outcomes, from renewal analysis where such boundary can be crossed. Clearly, the transition from alive to deceased can occur only once whereas the transition between healthy and ill can occur multiple times. Renewal analysis is governed by a similar set of equations but is conceptually different from survival analysis.

An illustrative performance comparison between a regular logistic regression model and Cox proportional hazard model used for predicting one-year mortality among heart failure patients is presented in Fig. [3.6](#page-27-0)

¹Hence the term "semiparametric".

(b) Performance of a Cox proportional hazard model.

Figure 3.6: Example: Comparison of logistic regression and Cox proportional hazard model performance for predicting one-year mortality among heart failure patients.

As can be seen from Fig. [3.6,](#page-27-0) the AUC for model in question is approximately 0.81. The attained maxima are approximately 0.45 for F_1 [score](#page-10-0) and 0.4 for [Matthews' correlation coefficient,](#page-10-1) however, those maxima are attained at approximately 45% of the total population for the logistic regression model and 5% for the Cox proportional hazard model. This leads us to believe that, in this particular case, the latter achieves optimal accuracy for smaller population samples than the former, however, overall model accuracies is virtually identical.

The R code for performing predictive modeling in the example above can be found in Appendix [D.](#page-127-0)

3.5 Data scrubbing

Several methods are available for the imputation of missing values [\[25\]](#page-217-4). A summary of currently used methods is presented in Table [3.3.](#page-28-1) For example,

Table 3.3: Missing data imputation methods

in the Heart Failure End-of-life project, the following fallback sequence was

used to backfill missing first diagnosis dates:

- i most recent Pacemaker Date,
- ii first AICD date,
- iii most recent ejection fraction measurement date,
- iv most recent cardiologist visit date,
- v most recent contact date.

3.6 Outliers

Outliers in the input data can be detected by examining the distribution of each independent variable. The following algorithm is suggested for detecting and eliminating outliers:

- I sort the values of a predictor variable in the ascending or descending order, depending on the nature of the variable;
- II eliminate obvious outliers, e.g., negative costs or 1000 mmHg blood pressure, by setting them to a predetermined fixed value (e.g., 0) or a specified aggregate statistic of the distribution (e.g., median value);
- III plot the histogram of the distribution and visually inspect it;
- IV if the parametric form of the distribution is known or can be inferred from theoretical or practical considerations, attempt to fit the distribution to its hypothesized shape and purge the "tails" (can be done for either normal or non-normal cases).
- V truncate the distribution if necessary (this should be considered the last resort);

3.7 Predictive variable selection

One of the most essential steps in developing a robust and accurate predictive model is variable selection. It is not uncommon to start this process with a candidate list of several hundred candidate predictors, eventually whittling it down to 10-20. While some sources advocate automated variable selection using, e.g., their significance levels, others point out that "...a purely statistical solution is unrealistic. The role of scientific judgment cannot be overlooked." [\[2\]](#page-215-6); see also [\[1\]](#page-215-7). Considering that it may be difficult to

implement a manual solution when working with a particularly large number of variables, an automated process, e.g., backward selection, may be used to augment but not supplant the researcher's judgment; a standard R package, caret, is widely accepted for this purpose [\[16\]](#page-216-4). An algorithm for this process is outlined in Fig [3.7.](#page-31-0)

3.7.1 Removing highly correlated variables

Model coefficients β for linear (3.10) and logistic regressions (3.18) are computed numerically and are thus susceptible to stability problems if the condition number of the corresponding linear system is large $[14]$, $[33]$. The condition number of a matrix is computed as

$$
\kappa(X) = \|X\| \|X^{-1}\| \tag{3.35}
$$

for a non-singular (square) matrix and $as¹$ $as¹$ $as¹$

$$
\kappa(X) = \|X\| \|X^{\dagger}\|,
$$
\n(3.36)

$$
X^{\dagger} = \begin{cases} (A^T A)^{-1} A^T, & \text{if } |A^T A| \neq 0, \\ A^T (A A^T)^{-1}, & \text{if } |A A^T| \neq 0. \end{cases}
$$
 (3.37)

We can see from [\(3.35\)](#page-30-3) that a numerically singular matrix for which $|A^T A| \approx$ 0 would lead to a numerically unstable set of coefficients β with respect to a small perturbation of X:

$$
\frac{\|\Delta\beta\|}{\|\beta + \Delta\beta\|} = \kappa(X) \frac{\|X\|}{\|X + \Delta X\|},
$$
\n(3.38)

In view of this, it is advisable to pare down highly correlated vectors as illustrated by the example below.

In the course of assessing the probability of hospitalization for chronic obstructive pulmonary disorder (COPD) patients, practitioners suggested an initial set of variables presented in Table [3.4](#page-30-1) as candidates for inclusion in the predictive linear regression model^{[2](#page-30-4)}.

¹In application to (3.10) and (3.18) , we are only concerned with the top line of (3.37) . ²The full nomenclature of input variables including their type and meaning can be found in Table [5.1](#page-84-3)

Start

Figure 3.7: An algorithm for selecting predictive variables. ©2016 NorthShore University HealthSystem 32

Table 3.4: Example: Variable selection for COPD logistic regression model

Predictive variable
CARDO 24MM VISIT
DAYS_SINCE_LAST_EF
DISCHARGED_DISP_30_DAYS
DISCHARGED_DISP_31_365_DAYS
DISCHARGED_DISP_365_DAYS
EJFR_NUM
HOSP_12M_VISIT
HOSP_30D_VISIT
NOT_PRN_MED_TOTAL_PRESCRIBED
NUM_ER_VISITS_30_DAYS_COPD
NUM_ER_VISITS_30_DAYS_PNEU
NUM_ER_VISITS_31_365_DAYS_COPD
NUM_ER_VISITS_31_365_DAYS_PNEU
NUM_ER_VISITS_365_DAYS_COPD
NUM_ER_VISITS_365_DAYS_PNEU
NUM_HF_HOSP_365_31_DAYS_COUNT
NUM_HOSP_30_DAYS_COPD
NUM_HOSP_30_DAYS_PNEU
NUM_HOSP_31_365_DAYS_COPD
NUM_HOSP_31_365_DAYS_PNEU
NUM_HOSP_365_DAYS_COPD
NUM_HOSP_365_DAYS_PNEU
NUM_MISSED_APPTS_365
NUM_UNIQUE_SPECIALTIES
PAT_AGE_YRS
PULMO_24MM_VISIT
TOTAL_LOS_HOSP_DAYS_LST_12_MO
TOTAL_MEDS_PRESCRIBED
ACE_INHIBITOR_PRESCRIBED
ANTICOAG_PRESCRIBED
ARB_PRESCRIBED
ASPIRIN_PLAVIX_PRESCRIBED
ASPIRIN_PRESCRIBED
BETA_BLOCKER_PRESCRIBED
CAD_IND
Continued on next page

33 ©2016 NorthShore University HealthSystem

 $\overline{}$

Table 3.4 – Continued from previous page

Predictive variable CALCCHANBLOCKER PRESCRIBED CANCER IND COMBOANTHYP PRESCRIBED DEM IND DIAB IND DIGOXIN PRESCRIBED EJFR IND ER VISITS 365 DAYS COPD IND FEMALE IND HF IND HOSP 365 DAYS COPD IND HTN IND INSULIN PRESCRIBED INTUB GT OR E 2DAYS LST 2YRS LOOPDIURETIC PRESCRIBED LOS GTE 10 DAYS HOSP METOLAZONE PRESCRIBED MG PCP 18M SEEN IND MG PCP 24M SEEN IND MILDOBDOP PRESCRIBED MI IND NONINSULIN DIAB PRESCRIBED O2 IND ORALNITRATE PRESCRIBED ORALVASODILSPERF PRESCRIBED PLAVIX PRESCRIBED PL ADHD IND PL BIPOLAR IND PL CKD IND PL DEPR IND PL HEPCIRR IND PL HIV IND PL PD IND PL PM IND PL PSYCH IND PL SCIATICA IND

Continued on next page

Table 3.4 – Continued from previous page

Predictive variable
PL SICKLE IND
SMOKER IND
SPIRON_PRESCRIBED
STATIN_PRESCRIBED
THIAZIDEDIUR PRESCRIBED

Available data included patient admission data for years 20[1](#page-34-1)0 to 2013¹. The model was trained on a random subsample consisting of 80% of patient admissions from 2010 to 2013 and tested on the remaining 20% of the data. Correlation matrices for binary and continuous/interval variables are presented in Fig. [3.8](#page-35-0) and [3.9.](#page-36-1) Specifically, highly correlated variables in binary and continuous/interval subspaces are listed in Tables [3.5](#page-34-0) and [3.6.](#page-37-0) We se-

Table 3.5: COPD model: Highly correlated binary variables

lect HF IND as the more reliable and transparent of the two indicators and MG PCP 24M SEEN IND as the standard medical group indicator from Table $3.5²$ $3.5²$ $3.5²$ $3.5²$. Selecting variables from Table [3.6](#page-37-0) is based on common sense business considerations and results in the following set: TOTAL MEDS - PRESCRIBED, EJFR NUM, NUM HOSP 365 DAYS COPD, NUM ER - VISITS 365 DAYS COPD, NUM HOSP 365 DAYS PNEU and NUM ER - VISITS 365 DAYS PNEU. Upon comparing the resulting variable sets with the initial candidate pool in Table [3.4,](#page-30-1) we can eliminate EJFR NUM, NUM - HOSP 365 DAYS COPD and NUM ER VISITS 365 DAYS COPD in favor of indicators EJFR IND, HOSP 365 DAYS COPD IND and ER VISITS - 365 DAYS COPD IND respectively. Further analysis shows no highly correlated variables on the combined set as shown in Fig. 3.10^3 3.10^3 3.10^3 . Graphs in Fig.

¹The original input data contains over $27,000$ rows and is too voluminous to present in this document.

²We use this indicator frequently in our reports, as it is our locally accepted definition of a "medical froup primary care patient".

³Technically, Pearson correlation between numeric and indicator variables is not very informative but we present it here anyway for illustration purposes.

Indicator correlation matrix

Figure 3.8: COPD Example: correlation matrix of binary, interval and continuous predictive variables

[3.8](#page-35-0) - [3.10](#page-38-0) were generated in R using the following command:

```
library (lattice)
l e v e l p l o t ( cor ( d a t a S e t ) , s c a l e s = l i s t ( x = l i s t ( r o t
    =90, cex = 0.5)
```
Listing 3.5: Example: R code for plotting a covariance matrix.
Numerical factor correlation matrix

Figure 3.9: COPD Example: correlation matrix of continuous/interval predictive variables

where dataSet is the dataframe containing original input data.

3.7.2 Computing a univariate odds ratio

Consider a 2×2 *contingency table* relating predicted and actual outcomes of interest as displayed in Table [3.7.](#page-37-0) An odds ratio is the ratio of odds of a patient having a binary outcome of interest (1) conditional upon having the

Predictive variable 1	Predictive variable 2	Corre-
TOTAL_MEDS_-	NOT_PRN_MED_TOTAL_-	lation 0.9924
PRESCRIBED	PRESCRIBED	
EJFR_NUM	DAYS_SINCE_LAST_EF	0.6989
DISCHARGED_DISP_365_-	DISCHARGED_DISP_31_365_DAYS	0.9575
DAYS		
NUM_HOSP_31_365_DAYS_-	NUM_HOSP_365_DAYS_COPD	0.9605
COPD		
NUM_ER_VISITS_31_365_-	NUM_ER_VISITS_365_DAYS_COPD	0.9656
DAYS_COPD		
NUM_HOSP_31_365_DAYS_-	NUM_HOSP_365_DAYS_PNEU	0.9643
PNEU		
NUM_ER_VISITS_31_365_-	NUM_ER_VISITS_365_DAYS_PNEU	0.9128
DAYS_PNEU		
HOSP_12M_VISIT	TOTAL_LOS_HOSP_DAYS_LST_12_-	0.8319
	MО	
NUM_HOSP_31_365_DAYS_-	TOTAL_LOS_HOSP_DAYS_LST_12_-	0.6173
PNEU	МO	
NUM_HOSP_365_DAYS_-	TOTAL_LOS_HOSP_DAYS_LST_12_-	0.6338
PNEH	MО	

Table 3.6: COPD model: Highly correlated continuous/interval variables

Predictive variable	Outcome	Total	
	n_{11}	n_{10}	n_{1*}
	n_{01}	n_{00}	n_{2*}
Total	n_{*1}	n_{*2}	

Table 3.7: Predictive variable and outcome of interest

property described by the predictive variable to the odds of the patient not having an outcome of interest (0) conditional upon not having that property:

$$
OR_{uni}^{(ind)} = \frac{\frac{n_{11}}{n_{10}}}{\frac{n_{01}}{n_{00}}} = \frac{n_{11}n_{00}}{n_{10}n_{01}}
$$
\n(3.39)

Statistically, an odds ratio describes how much more likely the patient is to have an outcome of interest if he possesses a property thought to be predictive of the outcome compared to not having that property. If the

Factor correlation matrix

Figure 3.10: COPD Example: correlation matrix of binary predictive variables

odds ratio or its inverse are different from 1, then there is a chance that the candidate predictive variable indeed possesses predictive power. This hypothesis can be statistically justified if the confidence interval for the odds ratio does not include 1 at the significance level α .

An example of a contingency matrix for hospital admissions of heart failure patients contingent upon them having had an ejection fraction test

previously ordered is presented in Table [3.8.](#page-39-0) Here the corresponding ratio

Ejection fraction ever ordered?	Hospitalized in the following 365 days?	Total	
	ves	no	
yes	5	90	95
no	20	1000	1020
TOTAL	25	1090	1115

Table 3.8: Example: Predictive variable and outcome of interest

is

$$
OR_{uni}^{(ind)} = \frac{\frac{5}{90}}{\frac{20}{1000}} = \frac{1}{18 \times 0.02} = 2.78,
$$

signifying a potentially high predictive value of ejection fraction having been ordered in the past when forecasting future hospitalizations within the following year.

If the predictor variable under consideration is categorical with more than two levels rather than indicator type, a 2×2 contingency table cannot be constructed and [\(3.39\)](#page-37-1) does not apply. In this case, either of the following modification of the algorithm for calculating the odds ratio can be employed to calculate a suitable proxy:

I One-vs.-the-rest:

- (a) compute the proportion of the total population that belongs to each category;
- (b) roll up categories containing the percentage of the population that is smaller than a predetermined lower boundary (e.g., 5%);
- (c) calculate the number of positive and negative outcomes of interest for the remainder of the population excluding each (rolled-up) category in turn;
- (d) construct the 2×2 contingency table as before and compute the "one-vs.the-rest" odds ratio for each category following the algorithm for indicator variables described above.

II Benchmark:

(a) roll up sparsely populated categories as described above;

- (b) select a "benchmark" category that makes business sense (e.g., "married" if examining marital status); in many instances, it makes sense to choose the most populous category as the benchmark;
- (c) for each category, construct the 2×2 contingency table against the benchmark and compute the "benchmark" odds ratio as you would for an indicator variable.

An example of the *one-vs.-the-rest* algorithm is given by blood utilization data presented in Table [3.9.](#page-40-0) Since there are no sparse categories, i.e., the

Pavilion		$#$ of patients	Total	% of Grand Total	
	transfused	not transfused			
А	800	24,200	25,000	40.32	
В	800	12,200	13,000	20.97	
$\rm C$	700	13,300	14,000	22.58	
D	700	9,300	10,000	16.13	
TOTAL	3,000	59,000	62,000	100.00	

Table 3.9: Example: Blood utilization data for building one-vs.the-rest contingency table^{[1](#page-40-1)}

ones containing less than 5% of the total population, we can separate each hospital (pavilion) in turn from the rest and generate 2×2 contingency tables as shown in Table [3.10.](#page-40-2) Judging by the odds ratios presented in Table [3.10,](#page-40-2)

Pavilion	#	of patients	Odds	Odds	CI	CI
	transfused	not transfused		ratio	lower	upper
A	800	24,200	0.033	0.52	0.48	0.57
Other	2,200	34,800	0.063			
B	800	12,200	0.066	1.39	1.28	1.52
Other	2,200	46,800	0.047			
\mathcal{C}	700	13,300	0.053	1.05	0.96	1.14
Other	2,300	45,700	0.050			
D	700	9,300	0.075	1.62	1.49	1.78
Other	2,300	49,700	0.046			

Table 3.10: Example: *One-vs.the-rest* contingency tables by hospital.

¹The total adds up to 100% within the roundoff error.

		Hospitalized in the		
Marital status		following 365 days?	Total	% of Grand Total
	yes	no		
Divorced	58	2,220	2,278	8.33
Engaged	θ	8	8	0.03
Legally Separated		39	40	0.15
Life Partner	\mathfrak{D}	34	36	0.13
Married	305	12,160	12,465	45.61
Separated (Not Legally)		96	97	0.35
Single	112	3,671	3783	13.84
Unknown	$\overline{2}$	352	354	1.30
Widowed	251	8,020	8,271	30.26
TOTAL	732	26,600	27,332	100.00

Table 3.11: Example: Predictive variable and outcome of interest

Pavilion C is the only hospital whose identity appears to have no discernible "predictive" influence on the number of blood transfusions compared to the rest of the pavilions.

As an example of the benchmark algorithm, consider admission data presented in Table [3.11.](#page-41-0) We now roll up sparse categories, e.g., the ones containing less than 5% of the total population, by merging "Engaged", "Legally Separated", "Life Partner" and "Separated (Not Legally)" into category "Other" as shown in Table [3.12.](#page-42-0) The most populous category, "Married", is a natural benchmark selection against which the odds ratios and their statistics can be computed. An example for category "Divorced" in shown in Table [3.13.](#page-42-1) Here the odds ratio is

$$
OR = \frac{\frac{58}{2,220}}{\frac{305}{12,160}} = \frac{0.0261}{0.0251} = 1.04,
$$

for the remaining categories as shown in Table [3.14](#page-42-2) A straightforward argument based on the data in Table [3.14](#page-42-2) would favor "Widowed" as a predictor of hospitalizations since its odds ratio is statistically significantly different from 1 at the 99% level $(p = 0.01)$ and its confidence interval (CI) does not include 1 at the 95% significance level ($p = 0.05$).

If the predictor variable is continuous rather than categorical, it could conceivably be transformed into the categorical form by "binning" its values into intervals, however, this approach is generally not recommended.

		Hospitalized in the		
Marital status		following 365 days?	Total	% of Grand Total
	yes	no		
Divorced	58	2,220	2,278	8.33
Married	305	12,160	12,465	45.61
Single	112	3,671	3783	13.84
Other	6	529	535	1.96
Widowed	251	8,020	8,271	30.26
TOTAL	732	26,600	27,332	100.00

Table 3.12: Example: Predictive variable and outcome of interest, rolled-up "Marital Status"

Marital status	Hospitalized in the following 365 days?	Total	
	yes	no	
Divorced	58	2,220	2,278
Married	305	12,160	12,465
TOTAL	363	14,380	14,743

Table 3.13: Example: Odds ratio for "Divorced" vs. "Married".

Marital status	Odds Ratio	CI Lower	CI Upper	p-value
Divorced	1.04	0.78	1.38	0.779
Single	1.21	0.98	1.52	0.081
Other	0.45	0.20	1.02	0.056
Widowed	1.25	$1.05\,$	1.48	

Table 3.14: Example: Benchmark odds ratios and their statistics.

Instead, an "incremental" odds ratio is computed as follows:

1. construct a univariate logistic regression model for the variable in question as $p<\infty$

$$
\ln\left(\frac{p(x)}{1 - p(x)}\right) = b_0 + ax \,,\tag{3.40}
$$

where b_0 is the intercept of the logistic equation, a is the slope of the (univariate logistic regression) line;

2. observe that

$$
\ln\left(\frac{p(x+1)}{1-p(x+1)}\right) = b_0 + a(x+1) ,\qquad (3.41)
$$

and hence

$$
\ln\left(\frac{p(x+1)}{1-p(x+1)}\right) - \ln\left(\frac{p(x)}{1-p(x)}\right) =
$$

$$
\ln\left(\frac{p(x+1)[1-p(x)]}{p(x)[1-p(x+1)]}\right) = a = \ln\left(OR_{uni}^{cont}\right).
$$
 (3.42)

Exponentiating both sides, we obtain

$$
OR_{uni}^{cont} = e^a \tag{3.43}
$$

The odds ratio defined by [\(3.43\)](#page-43-0) can be viewed as a proportional increase in the odds of encountering an outcome of interest corresponding to a unitary increase in the value of the (continuous) predictive variable of interest. Note here that (3.43) makes sense only if the predictive variable can indeed vary by 1, if not, it needs to be reformulated with respect to the permissible increment δ [\[15\]](#page-216-0):

$$
\ln\left(\frac{p(x+\delta)}{1-p(x+\delta)}\right) - \ln\left(\frac{p(x)}{1-p(x)}\right) =
$$

$$
\ln\left(\frac{p(x+\delta)[1-p(x)]}{p(x)[1-p(x+\delta)]}\right) = \delta a ,\qquad (3.44)
$$

$$
\ln\left(OR(\delta)_{uni}^{cont}\right) = \delta a \tag{3.45}
$$

$$
OR(\delta)_{uni}^{cont} = e^{\delta a} \tag{3.46}
$$

An instructive example of the foregoing is the "incremental" odds ratio with respect to patient age as described in Table [3.15.](#page-44-0) We construct a univariate

		Hospital-			Hospital-			Hospital-		Hospital-	
		ized in the			ized in the		ized in the				ized in the
		following			following			following			following
Age		365 days ?	Age		$365 \; \text{days}$?	Age		$365 \ \mathrm{days}$?	Age		365 days ?
	yes	$\rm {no}$		yes	$\rm {no}$		yes	$\rm {no}$		yes	no
$\overline{0}$	$\overline{0}$	$\overline{0}$	27	$\overline{0}$	$8\,$	$54\,$	$\overline{4}$	175	81	28	889
$\mathbf{1}$	$\boldsymbol{0}$	$\boldsymbol{0}$	28	$\boldsymbol{0}$	$\overline{7}$	$55\,$	$\overline{5}$	202	82	39	927
$\overline{2}$	$\overline{0}$	$\overline{0}$	29	$\boldsymbol{0}$	10	56	$\overline{5}$	233	83	39	969
3	$\overline{0}$	$\overline{0}$	30	$\overline{0}$	16	57	9	247	84	26	984
$\overline{4}$	$\overline{0}$	$\boldsymbol{0}$	31	$\boldsymbol{0}$	16	$58\,$	9	257	85	38	916
$\overline{5}$	$\overline{0}$	$\overline{0}$	32	$\boldsymbol{0}$	17	59	$\overline{5}$	284	86	27	908
$\boldsymbol{6}$	$\overline{0}$	$\overline{7}$	33	$\boldsymbol{0}$	11	60	10	302	87	25	830
$\overline{7}$	$\overline{0}$	11	34	$\overline{0}$	8	61	10	321	88	24	779
8	$\overline{0}$	10	35	$\boldsymbol{0}$	8	62	$\overline{5}$	347	89	19	749
9	$\overline{0}$	12	36	$\boldsymbol{0}$	$\overline{9}$	63	9	413	90	17	642
10	$\overline{0}$	$13\,$	37	$\boldsymbol{0}$	$15\,$	64	3	429	91	17	586
11	$\overline{0}$	11	38	$\boldsymbol{0}$	17	65	14	442	92	$15\,$	544
12	$\overline{0}$	12	39	$\boldsymbol{0}$	25	66	12	493	93	66	438
13	$\overline{0}$	10	40	$\boldsymbol{0}$	31	67	10	470	94	3	389
14	$\overline{0}$	7	41	$\boldsymbol{0}$	30	68	10	541	95	3	332
15	$\overline{0}$	$\overline{6}$	42	$\overline{0}$	32	69	14	561	96	$\overline{4}$	258
16	$\overline{0}$	$\,6$	43	$\boldsymbol{0}$	33	70	17	606	97	3	224
17	$\overline{0}$	8	44	$\boldsymbol{0}$	41	71	21	596	98	$\overline{2}$	183
18	$\overline{0}$	13	45	$\overline{0}$	46	72	18	592	99	$\overline{2}$	133
19	$\overline{0}$	14	46	$\boldsymbol{0}$	47	73	21	596	100	$\overline{0}$	97
20	$\overline{0}$	$12\,$	47	$\boldsymbol{0}$	71	74	26	636	101	$\overline{0}$	64
21	$\overline{0}$	$13\,$	48	$\boldsymbol{0}$	77	75	21	679	102	$\overline{0}$	$40\,$
22	$\overline{0}$	$11\,$	49	$\boldsymbol{0}$	98	76	20	700	103	$\overline{0}$	$38\,$
23	$\overline{0}$	11	50	$\overline{4}$	120	77	23	737	104	$\boldsymbol{0}$	$30\,$
24	$\overline{0}$	11	51	3	121	78	24	747	105	$\overline{0}$	18
25	$\overline{0}$	8	52	$\bf 5$	143	79	25	820	106	$\boldsymbol{0}$	$\boldsymbol{9}$
26	$\boldsymbol{0}$	$\overline{7}$	53	3	165	80	31	838			

Table 3.15: Example: Patient outcome by age.

logistic regression model from the data in Table [3.15](#page-44-0) using [\(3.40](#page-39-1) - [3.43\)](#page-43-0).

$$
\ln\left(\frac{p(x)}{1 - p(x)}\right) = -19.58 + 0.0247x ,\qquad (3.47)
$$

and, therefore,

$$
OR_{uni}^{cont} = e^0.0247 = 1.025
$$
 (3.48)

The odds ratio in [\(3.48\)](#page-45-0) does not reveal much of a pattern of dependency of the probability of hospitalization on the patient's age. Alternatively, considering an increment of 10 years instead, we obtain:

$$
OR(10)^{cont}_{uni} = e^{0.247} = 1.28 , \qquad (3.49)
$$

and thus the odds ratio over a [1](#page-45-1)0-year interval appears¹ to have more potential predictive power than its conventional counterpart defined by [\(3.48\)](#page-45-0). Regardless of the size of the increment δ , the graph of $logit(p(x))$ in Fig. [3.11](#page-52-0) leads one to be skeptical about the influence of age as a continuous variable on the likelihood of hospitalization. Its inclusion in the final set of variables needs to be justified by examining overall model performance as described in section [3.10.2.](#page-71-0) The R code used for generating Fig. [3.11](#page-52-0) is presented in Listing [3.6.](#page-51-0)

In the example in Section [3.7.1,](#page-30-0) the odds ratio matrix computed for binary variables is presented in Table 3.16^2 3.16^2 3.16^2

Table 3.16: Example: Univariate odds ratio statistics for COPD logistic regression model - binary and indicator variables.

Continued on next page

¹Here we are not considering the confidence interval of $OR(10)_{uni}^{cont}$

 2 Table [3.16](#page-45-2) was generated by calling odds.ratio.save from package NS.CA.modelUtils, see Appendix [E.4;](#page-137-0) function signature can be found, e.g., in Listing [D](#page-127-0) in Appendix [D.](#page-127-0)

			Confidence	Va-	
	Odds	Pr(z)		interval	$li-$
Variable	Ratio	$> Z$)	Lower	$\overline{\text{Upper}}$	$di-$
			boun-	boun-	ty
			dary	dary	
ANTICOAG-	2.1877	0.0000	1.8446	2.5946	$\overline{\ast}$
PRESCRIBED					\ast
ARB_PRESCRIBED	2.0724	0.0000	1.7051	2.5187	
ASPIRIN_PLAVIX_-	1.6495	0.3972	0.5179	5.2541	
PRESCRIBED ASPIRIN PRESCRIBED	1.6309	0.0000	1.3749	1.9347	\ast
BETA_BLOCKER_-	1.6672	0.0000	1.4203	1.9569	\ast
PRESCRIBED CAD_IND	0.8656	0.1490	0.7115	1.0530	
CALCCHANBLOCKER_-	2.3203	0.0000	1.9747	2.7262	\ast
PRESCRIBED					
CANCER_IND	1.7982	0.0115	1.1405	2.8350	\ast
COMBOANTHYP-	1.3457	0.0254	1.0372	1.7461	\ast
PRESCRIBED					
DEM_IND	0.8037	0.5692	0.3786	1.7059	
DIAB_IND	0.9554	0.6724	0.7734	1.1803	
DIGOXIN_PRESCRIBED	1.4132	0.0159	1.0670	1.8716	\ast
EJFR_IND	3.8428	0.0000	3.2834	4.4974	\ast
ER_VISITS_365_DAYS_-	10.4165	0.0000	7.3204	14.8222	\ast
COPD_IND FEMALE_IND	1.0764	0.3582	0.9200	1.2594	
HF_IND	0.9542	0.6393	0.7842	1.1610	
HOSP_365_DAYS_COPD_-	12.4944	0.0000	10.4371	14.9571	\ast
IND					
HTN_IND	0.9466	0.4894	0.8100	1.1061	
INSULIN_PRESCRIBED	1.6748	0.0001	1.2896	2.1749	\ast
INTUB_GT_OR_E_-	1.8815	0.1693	0.7639	4.6339	
2DAYS_LST_2YRS LOOPDIURETIC_-	1.4818	0.0005	1.1877	1.8489	\ast
PRESCRIBED LOS_GTE_10_DAYS_-	3.2674	0.0000	2.6066	4.0957	\ast
HOSP METOLAZONE ₋	1.5546	0.0784	0.9512	2.5408	
PRESCRIBED MG_PCP_18M_SEEN_IND	2.1249	0.0000	1.8176	2.4841	\ast

Table 3.16 – Continued from previous page

Continued on next page

				Confidence	
Variable	Odds	Pr(z)	interval		$li-$
	Ratio	$> Z$)	Lower	$\overline{\text{Upper}}$	di-
			boun-	boun-	ty
			dary	dary	
MLIND	0.8766	0.5153	0.5895	1.3036	
MILDOBDOP-	2.2253	0.5827	0.1283	38.5944	
PRESCRIBED					
NONINSULIN_DIAB_-	1.3872	0.0042	1.1087	1.7357	\ast
PRESCRIBED $O2$ _IND	4.7988	0.0000	3.7379	6.1609	\ast
ORALNITRATE_-	1.3678	0.0276	1.0352	1.8071	\ast
PRESCRIBED					
ORALVASODILSPERF-	3.0655	0.0000	2.1321	4.4075	\ast
PRESCRIBED					
PL_ADHD_IND	2.5317	0.1201	0.7847	8.1676	
PL_BIPOLAR_IND	0.5756	0.2744	0.2138	1.5498	
PL_CKD_IND	1.4633	0.0272	1.0438	2.0514	\ast
PL_DEPR_IND	0.9884	0.9268	0.7713	1.2667	
PL_HEPCIRR_IND	0.6641	0.2857	0.3133	1.4079	
PL_HIV_IND	2.9190	0.1449	0.6914	12.3239	
PL_PD_IND	0.5583	0.2487	0.2074	1.5030	
PL_PM_IND	1.5748	0.0039	1.1565	2.1443	\ast
PL_PSYCH_IND	1.5381	0.2667	0.7196	3.2877	
PL_SCIATICA_IND	1.2370	0.0267	1.0249	1.4931	\ast
PL_SICKLE_IND	9.4805	0.0444	1.0582	84.9378	\ast
PLAVIX_PRESCRIBED	1.8720	0.0000	1.4833	2.3630	\ast
SMOKER_IND	3.2665	0.0000	2.4959	4.2749	\ast
SPIRON_PRESCRIBED	1.9064	0.0000	1.4722	2.4685	\ast
STATIN_PRESCRIBED	1.5582	0.0000	1.3314	1.8237	\ast
THIAZIDEDIUR ₋ -	1.7971	0.0000	1.4951	2.1602	\ast
PRESCRIBED					
African American:	0.5408	0.0000	0.4098	0.7135	\ast
Caucasian Asian : Caucasian	0.9925	0.9833	0.4892	2.0134	
Other: Caucasian	1.4645	0.0071	1.1091	1.9336	\ast
Divorced: Married	1.0628	0.6914	0.7868	1.4355	
Single: Married	1.2016	0.1233	0.9513	1.5177	
Unknown: Married	0.4367	0.0679	0.1795	1.0627	

Table 3.16 – Continued from previous page

Continued on next page

Table 3.16 – *Continued from previous page*

			Confidence		Va-l
	Odds	Pr(z)	interval		li-
Variable	Ratio	$> Z$)	Lower	Upper	$di-$
			boun-	boun-	ty
			dary	dary	
Widowed: Married	1.2698	0.0087	1.0623	1.5178	\ast

As can be seen from Table [3.16,](#page-45-2) the most significant predictive variables with respect to their odd ratios are HOSP 365 DAYS COPD IND, ER VIS-ITS 365 DAYS COPD IND, PL SICKLE IND and O2 IND. The confidence interval for the odds ratio of hospitalization as a function of sickle cell anemia is very wide alerting us to the possible unreliability of this variable as a predictor. Additional data (not presented here for the sake of brevity) shows that the number of patients with sickle cell anemia is too small to derive meaningful conclusions, and therefore, this variable can be dropped from consideration.

The odds ratio matrix computed for continuous / interval variables is presented in Table [3.17](#page-48-0)[1](#page-48-1)

Table 3.17: Example: Univariate odds ratio statistics for COPD logistic regression model - interval and continuous variables.

			Confidence		$Va-$
	Odds	Pr(z)	interval		li-
Variable	Ratio	$> Z$)	Lower	Upper	$di-$
			boun-	boun-	ty
			dary	dary	
CARDO ₋₂₄ MM _{-VISIT}	1.1441	0.0000	1.1028	1.1869	\ast
DAYS_SINCE_LAST_EF	1.0009	0.0000	1.0007	1.0011	\ast
DISCHARGED_DISP_30_-	5.5997	0.0000	3.9663	7.9056	\ast
DAYS DISCHARGED_DISP_31_-	4.2532	0.0000	3.5935	5.0340	\ast
365_DAYS DISCHARGED_DISP_-	4.3690	0.0000	3.7120	5.1422	\ast
365_DAYS					

Continued on next page

¹Table [3.17](#page-48-0) was generated by calling $run.g1m.model$ from package textttNS.CA.modelUtils, see Appendix [E.4;](#page-137-0) function signature can be found, e.g., in Listing [D](#page-127-0) in Appendix [D.](#page-127-0)

			Confidence		Va-
Variable	Odds	Pr(z)	interval		$li-$
	Ratio	$> Z$)	Lower	\bar{U} pper	di-
			boun-	boun-	ty
			dary	dary	
EJFR_NUM	1.0234	0.0000	1.0211	1.0257	\ast
HOSP_12M_VISIT	1.5409	0.0000	1.4907	1.5929	\ast
HOSP_30D_VISIT	3.8266	0.0000	3.2682	4.4804	\ast
NOT_PRN_MED_-	1.1319	0.0000	1.1107	1.1535	\ast
TOTAL_PRESCRIBED NUM_ER_VISITS_30_-	12.0603	0.0000	5.5671	26.1269	\ast
DAYS_COPD NUM_ER_VISITS_30_-	15.1914	0.0012	3.8305	60.2473	\ast
DAYS_PNEU NUM_ER_VISITS_31_365_-	3.7188	0.0000	2.7820	4.9710	\ast
DAYS_COPD NUM_ER_VISITS_31_365_-	4.2475	0.0032	1.8979	9.5060	\ast
DAYS_PNEU NUM_ER_VISITS_365_-	3.9804	0.0000	3.0254	5.2368	\ast
DAYS_COPD NUM_ER_VISITS_365_-	5.4457	0.0000	2.7264	10.8770	\ast
DAYS_PNEU NUM_HF_HOSP_365_31_-	1.8967	0.0000	1.6273	2.2108	\ast
DAYS_COUNT NUM_HOSP_30_DAYS_-	16.0163	0.0000	11.7692	21.7960	\ast
COPD NUM_HOSP_30_DAYS_-	5.9912	0.0000	4.3968	8.1638	\ast
PNEU NUM_HOSP_31_365_-	4.1532	0.0000	3.6970	4.6656	\ast
DAYS_COPD NUM_HOSP_31_365_-	2.5963	0.0000	2.3653	2.8498	\ast
DAYS_PNEU NUM_HOSP_365_DAYS_-	4.3934	0.0000	3.9402	4.8987	\ast
COPD NUM_HOSP_365_DAYS_-	2.5560	0.0000	2.3428	2.7886	\ast
PNEU NUM_MISSED_APPTS_-	1.0664	0.0000	1.0562	1.0766	\ast
365 NUM_UNIQUE_-	1.3969	0.0000	1.3541	1.4411	\ast
SPECIALTIES PAT_AGE_YRS	1.0031	0.3006	0.9982	1.0079	
PULMO_24MM_VISIT	1.3583	0.0000	1.3182	1.3997	\ast

Table 3.17 – Continued from previous page

 \overline{C} Continued on next page

			Confidence		Va-
	Odds	Pr(z	interval		li-
Variable	Ratio	$> Z$)	Lower	Upper	di-
			boun-	boun-	ty
			dary	dary	
TOTAL LOS_HOSP_-	1.0595	0.0000	1.0537	1.0653	\ast
DAYS_LST_12_MO TOTAL_MEDS_-	1.1203	0.0000	1.1020	1.1388	\ast

Table 3.17 – *Continued from previous page*

As can be seen from Table [3.17,](#page-48-0) the most significant predictive variables with respect to their odd ratios are NUM_HOSP_30_DAYS_COPD, NUM_-ER VISITS 30 DAYS PNEU, and NUM ER VISITS 30 DAYS COPD. We can also observe that PAT AGE YRS appears to be insignificant from the point of view of the corresponding odds ratio. In spite of this, we need to bear in mind that, as pointed out in Section [3.7.2,](#page-36-0) a one year increase in patient age does not change the odds of hospitalization significantly and thus patient's age cannot be automatically discarded from the final model.

3.7.3 Computing a multivariate odds ratio

The odds ratio defined in Section [3.7.2](#page-36-0) loses its meaning for a multivariate model regardless of whether the predictive variables are of indicator, categorical or continuous type. Fortunately, [\(3.42\)](#page-43-1) can be generalized to the case of a multivariate model once we realize that all terms in a multivariate logistic equation except a vanish the same way as they did in (3.42) once we construct the "incremental" odds ratio. In view of this, our algorithm will proceed as follows:

1. construct a multivariate logistic regression model for the variable in question as

$$
\ln\left(\frac{p(x)}{1-p(x)}\right) = b_0 + \sum_{i=1}^{N} a_i x_i , i = \overline{1, N} , \qquad (3.50)
$$

where $x = (x_1, \ldots, x_n)^T$ is the vector of predictive variables;

2. observe that

$$
\ln\left(\frac{p(x_i+1)}{1-p(x_i+1)}\right) = b_0 + \sum_{k=1}^{i-1} a_i x_i + a_i (x_i+1) + \sum_{k=i+1}^{N} a_i x_i , \quad (3.51)
$$

```
logit \leftarrow function(x) { return( log(x / (1 – x))
    ) }
COPDadmRaw \leq -\text{read.csv} ( " ../Data/CODEALL-ALIVE.csv")
outcome <− "INP OBS COPD ADM 365 DAYS"
COPDadm \leftarrow transform (COPDadmRaw , c ("PAT_AGE_YRS",
    outcome ) ] ,
                            PAT AGE YRS=round( PAT AGE YRS
                                 ) )
\text{COPDadm} is . na( \text{COPDadm} , outcome ] ), outcome ] \leq -0COPDform \leq as . formula ( paste ( "PAT AGE YRS \tilde{\cdot}",
    outcome, sep = " " \ ) )
COPDprod <- transform ( d cast (COPDadm, COPDform,
    length)colnames (\text{COPDprod}) <\text{c} (\text{PAT}\text{-}\text{AGE}\text{-}\text{YRS}", "No", "Yes"
    )
\text{COPDprod} \leq \text{mutate}(\text{COPDprod}, \text{Total=Yes} + \text{No},Prob=Yes / Total ,
                          Logit = logit ( Prob ) )COPDprod[! is . finite ( <i>CCPDprod\$Logit</i> ), "Logit" ] <math>\leftarrow</math>-25plot ( COPDprod$PAT_AGE_YRS, COPDprod$Logit,
       main="Logit\_of\_the\_probability\_of\_h o spitalization", xlab="Age, \_\text{yrs}.",
        y \, \text{lab} = " \, \text{Logit}(p) = -p / (1 - p)"
```
Listing 3.6: Example: R code for generating the logit of age-dependent propability of hospitalization.

Figure 3.11: Example: Probability of hospitalization from univariate logistic regression on patient age.

and hence

$$
\ln\left(\frac{p(x_i+1)}{1-p(x_i+1)}\right) - \ln\left(\frac{p(x_i)}{1-p(x_i)}\right) =
$$

$$
\ln\left(\frac{p(x_i+1)[1-p(x_i)]}{p(x_i)[1-p(x_i+1)]}\right) = a_i = \ln\left(OR_{multi}^{cont}\right)
$$
 (3.52)

Exponentiating both sides, we obtain

$$
OR_{multi}^{cont} = e^{a_i} \tag{3.53}
$$

The odds ratio defined by [\(3.53\)](#page-52-1) represents a proportional increase in the odds of encountering an outcome of interest corresponding to a unitary increase in the value of the respective (continuous) predictive variable of interest. The same note of caution with respect to the domain of the "incremental" multivariate odds ratio applies here as in the univariate case above.

In the example in Section [3.7.1,](#page-30-0) the odds ratio matrix computed for both continuous / interval and indicator variables is presented in Table [3.18.](#page-54-0)

Table 3.18: . Example: Multivariate odds ratio statistics for COPD logistic regression model

 $\bigodot\!2016$ North
Shore University Health
System 2016 NorthShore University HealthSystem

 55

Continued on next page

Table 3.18 – Continued from previous page

 \vert Continued on next page

Table 3.18 – Continued from previous page

	Univariate analysis							Multivariate analysis		
Variable				Confidence	\overline{Va}				Confidence	\overline{Va}
	Odds	Pr(z)		interval	$li-$	Odds	Pr(z)		interval	$li-$
	Ratio	$> Z$)	Lower	Upper	di-	Ratio	> Z	Lower	Upper	di-
			boun-	boun-	ty			boun-	boun-	ty
			dary	dary				dary	dary	
HOSP_12M_VISIT	1.54	0.0000	1.49	1.59	\ast	1.10	0.0155	1.03	1.18	\ast
HOSP_30D_VISIT	3.93	0.0000	3.35	4.60	\ast	1.15	0.3746	0.88	1.51	
HOSP ₋₃₆₅ -DAYS ₋	12.49	0.0000	10.42	14.96	\ast	3.72	0.0000	3.02	4.57	\ast
COPD_IND HTN_IND	0.91	0.2184	0.78	1.06		0.69	0.0002	0.59	0.81	\ast
INSULIN_PRESCRIBED	1.70	0.0001	1.31	2.21	\ast	0.90	0.5348	0.67	1.20	
INTUB_GT_OR_E_-	2.75	0.0101	1.27	5.95	\ast	0.90	0.8125	0.43	1.87	
2DAYS_LST_2YRS LOOPDIURETIC-	1.50	0.0003	1.20	1.88	\ast	0.00	0.0000	0.00	0.00	
PRESCRIBED LOS_GTE_10_DAYS_-	3.41	0.0000	2.73	4.25	\ast	1.12	0.4377	0.88	1.42	
HOSP METOLAZONE-	1.46	0.1391	0.88	2.43		0.92	0.7793	0.57	1.49	
PRESCRIBED MG_PCP_18M_SEEN_-	2.13	0.0000	1.82	2.49	\ast	0.00	0.0000	0.00	0.00	
IND MI_IND	0.91	0.6526	0.62	1.35		1.05	0.8382	0.73	1.51	
MILDOBDOP-	1.80	0.6844	0.11	30.77		0.00	0.9665	0.00	99999	
PRESCRIBED										
									Continued on next nage	

Continued on next page

Table 3.18 – Continued from previous page

 \overline{C} Continued on next page

 $\bigcirc \space\! 2016$ North
Shore University Health
System 2016 NorthShore University HealthSystem

Continued on next page

									Contentaca from processes page	
	Univariate analysis							Multivariate analysis		
Variable				Confidence	Va-			Confidence		Va-
	Odds	Pr(z)		interval	$li-$	Odds	Pr(z)		interval	$li-$
	Ratio	$> Z$)	Lower	Upper	di-	Ratio	$> Z$)	Lower	Upper	di-
			boun-	boun-	t_{V}			boun-	boun-	ty
			dary	dary				dary	dary	
PAT_AGE_YRS	$\overline{1.00}$	0.3006	$\overline{1.00}$	$\overline{1.01}$		$\overline{1.02}$	0.0000	$\overline{1.01}$	1.03	$\overline{\ast}$
PL_ADHD_IND	2.48	0.1289	0.77	7.98		2.14	0.2349	0.75	6.14	
PL_BIPOLAR_IND	0.44	0.1578	0.14	$1.38\,$		0.49	0.2527	0.18	1.36	
PL_CKD_IND	1.49	0.0184	1.07	2.09	\ast	1.00	0.9945	0.72	1.38	
PL_DEPR_IND	0.96	0.7239	0.74	1.23		0.87	0.3276	0.69	1.10	
PL_HEPCIRR_IND	0.76	0.4370	0.37	1.53		0.54	0.1247	$0.28\,$	1.04	
PL_HIV_IND	$3.16\,$	0.1183	0.75	13.41		2.81	0.2131	0.72	11.03	
PL_PD_IND	0.82	0.6420	0.37	1.86		0.67	0.3585	0.32	1.38	
PL_PM_IND	1.42	0.0336	1.03	1.96	\ast	0.98	0.9006	0.70	1.35	
PL_PSYCH_IND	$1.32\,$	0.5100	0.58	2.98		1.78	0.1877	0.87	3.65	
PL_SCIATICA_IND	1.14	0.1956	0.94	1.38		0.80	0.0379	0.66	0.95	\ast
PL_SICKLE_IND	9.48	0.0444	1.06	84.94	\ast	22.53	0.0178	2.59	19575	\ast
PLAVIX_PRESCRIBED	1.90	0.0000	1.50	2.40	\ast	1.44	0.0126	1.13	1.83	\ast
PULMO ₋₂₄ MM _{-VISIT}	1.38	0.0000	1.33	1.42	\ast	1.17	0.0000	$1.12\,$	1.21	\ast
Single : Married	$1.32\,$	0.0157	$1.05\,$	1.66	\ast	0.00	0.0000	0.00	0.00	
SMOKER_IND	3.19	0.0000	2.44	4.17	\ast	2.21	0.0000	1.74	2.80	\ast
SPIRON_PRESCRIBED	2.05	0.0000	1.60	2.64	\ast	1.21	0.2251	0.93	1.58	
STATIN_PRESCRIBED	1.50	0.0000	1.28	1.76	\ast	0.79	0.0198	0.66	0.93	\ast

Table 3.18 – Continued from previous page

 \vert Continued on next page

Table 3.18 – Continued from previous page

	Univariate analysis							Multivariate analysis		
Variable				Confidence	$V\overline{a}$				Confidence	$Va-$
	Odds	Pr(z)		interval	٠. li-	Odds	Pr(z)		interval	$li-$
	Ratio	$> Z$)	Lower	Upper	di-	Ratio	> Z	Lower	Upper	di-
			boun-	boun-	ty			boun-	boun-	ty
			dary	dary				dary	dary	
THIAZIDEDIUR ₋	1.72	0.0000	1.43	2.08	\ast	$1.11\,$	0.3772	0.91	1.35	
PRESCRIBED TOTAL_LOS_HOSP_-	1.06	0.0000	1.05	1.07	\ast	0.00	0.0000	0.00	0.00	
DAYS_LST_12_MO TOTAL_MEDS_-	1.12	0.0000	1.10	1.14	\ast	1.09	0.0000	1.06	1.12	\ast
PRESCRIBED Unknown: Married	0.43	0.0640	0.18	1.05		0.00	0.0000	0.00	0.00	
Widowed: Married	1.25	0.0150	1.04	1.50	\ast	0.00	0.0000	0.00	0.00	

As can be seen from Table [3.18,](#page-54-0) the most significant predictive variables with respect to their odd ratios are NUM_HOSP_30_DAYS_COPD, NUM_ ER VISITS 30 DAYS PNEU, and NUM ER VISITS 30 DAYS COPD. We can also observe that PAT AGE YRS appears to be insignificant from the point of view of the corresponding odds ratio. In spite of this, we need to bear in mind that, as pointed out in Section [3.7.2,](#page-36-0) a one year increase in patient age does not change the odds of hospitalization significantly and thus patient's age cannot be automatically discarded from the final model.

3.7.4 Assessing model coefficients

The coefficients of a linear or logistic regression are computed using a variant of the normal equation (3.10) . In reality, this relationship includes the random error component

$$
y = \sum_{i=0}^{N} a_i x_i + \epsilon \,, \tag{3.54}
$$

$$
x_0 = 1, \t(3.55)
$$

where the intercept has been incorporated into the general equation for convenience by virtue of (3.54) . Coefficients a_i , obtained with the help of (3.54) - (3.55) , are estimates, albeit *unbiased* [\[21\]](#page-216-1); the uncertainty in their calculation is implied by the random nature of ϵ . If we assume the normality of errors, $\epsilon \sim \mathcal{N}(0, \sigma^2)$, then the standard null hypotheses $H_0(a_i)$: $a_i = 0$ can then be tested by computing the t-statistic

$$
t_i = \frac{\hat{a}_i - a_{i0}}{s.e.(\hat{a}_i)}, \ i = \overline{1, N}, \tag{3.56}
$$

$$
s.e.(\hat{a_i}) = \sqrt{\frac{MS_{Res}}{S_{xx}}}, \qquad (3.57)
$$

$$
MS_{Res} = \frac{1}{N-2} \sum_{i=1}^{N} \epsilon_i^2 , \qquad (3.58)
$$

$$
S_{xx} = \sum_{i=1}^{N} (x_i - \overline{x})^2
$$
 (3.59)

$$
\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{3.60}
$$

$$
t_0 = \frac{\hat{a_0} - a_{00}}{s.e.(\hat{a_0})}, \qquad (3.61)
$$

$$
s.e.(\hat{a_0}) = \sqrt{MS_{Res} \left(\frac{1}{N} + \frac{\overline{x}^2}{S_{xx}} \right)}, \qquad (3.62)
$$

$$
t_i \sim \chi^2_{N-2} \,. \tag{3.63}
$$

The significance of the coefficient, i.e., the probability that it comes from a distribution centered at 0 is determined by the test statistic t_i . In view of [3.63,](#page-61-1) we can compute the appropriate p-values at the α significance level and construct the usual confidence intervals for a_i , $i = \overline{1, N}$ as

$$
a_i \in \left[\hat{a}_i - t_{\frac{\alpha}{2}, N-2} \times s.e. (a_i), \hat{a}_i + t_{\frac{\alpha}{2}, N-2} \times s.e. (a_i) \right], \quad (3.64)
$$

In our ongoing COPD example, we can now finalize the set of predictive variables and create a model for testing and validation. Drawing upon the results presented in Table [3.18](#page-54-0) and Section [3.7.1,](#page-30-0) we select the coefficients for model [\(3.18\)](#page-21-0) based on the statistical significance of their odds ratios and subject matter knowledge, and calculate their statistics presented in Table [3.19.](#page-62-0)

					Va-
Variable	Esti-	Std.	Z	Pr(z)	$li-$
	mate	error	value	> Z	di-
					ty
(Intercept)	-677	0.37	-182	0.0000	$\overline{\ast}$
ACE_INHIBITOR_-	0.20	0.10	1.93	0.0530	
PRESCRIBED ANTICOAG-	0.21	0.11	1.97	0.0485	\ast
PRESCRIBED ARB_PRESCRIBED	0.18	0.12	1.58	0.1137	
ASPIRIN_PRESCRIBED	-013	0.11	-124	0.2135	
BETA_BLOCKER_-	-010	0.10	-101	0.3127	
PRESCRIBED CALCCHANBLOCKER_-	0.21	0.10	2.22	0.0266	\ast
PRESCRIBED DIGOXIN_PRESCRIBED	-028	0.16	-169	0.0902	
EJFR_IND	0.55	0.10	5.57	0.0000	\ast
ER_VISITS_365_DAYS_-	1.05	0.22	4.76	0.0000	\ast
COPD_IND					

Table 3.19: . Example: COPD logistic regression model coefficients and their statistics

Continued on next page

					Va-
Variable	Esti-	Std.	Ζ	Pr(z)	$1i-$
	mate	error	value	> Z	di-
					ty
HOSP_12M_VISIT	0.12	0.03	4.24	0.0000	$\overline{\ast}$
HOSP_365_DAYS_COPD_-	1.66	0.11	14.85	0.0000	\ast
IND					
INSULIN_PRESCRIBED	-014	0.17	-086	0.3903	
INTUB_GT_OR_E_-	0.01	0.42	0.03	0.9771	
2DAYS_LST_2YRS					
NONINSULIN_DIAB_-	-004	0.14	-032	0.7524	
PRESCRIBED					
NUM_UNIQUE_-	0.24	0.02	9.70	0.0000	\ast
SPECIALTIES					\ast
$O2$ IND	0.56	0.15	3.77	0.0002	
ORALNITRATE_-	-030	0.16	-184	0.0660	
PRESCRIBED					
PAT_AGE_YRS	0.01	0.00	3.73	0.0002	\ast
PL_PM_IND	-002	0.18	-009	0.9248	
PLAVIX_PRESCRIBED	0.26	0.14	1.87	0.0608	
PULMO ₋₂₄ MM _{-VISIT}	0.14	0.02	6.35	0.0000	\ast
SMOKER IND	0.85	0.15	5.69	0.0000	\ast
SPIRON_PRESCRIBED	-006	0.16	-036	0.7206	
STATIN_PRESCRIBED	-024	0.10	-243	0.0151	\ast

Table 3.19 – Continued from previous page

As follows from Table [3.19,](#page-62-0) HOSP 365 DAYS COPD IND, ER VISITS -365 DAYS COPD IND, SMOKER IND, O2 IND and EJFR IND have the most impact on the estimated probability of outcome of interest and are statistically significantly different from 0. From the clinical perspective, this makes prefect sense. On the other hand, automatically removing from the model those variables that are not statistically significantly different from 0 may result in loss of information and is not generally recommended.

3.8 Transformation of variables

In many instances, variable transformation does not change the qualitative nature of the relationship between the corresponding predictive variable and the outcome. In obvious cases, however, it may significantly improve the quality of the model as illustrated by the following, admittedly contrived, example.

X	X^4	Y
1.00	1.00	0.02
2.00	16.00	22.74
3.00	81.00	21.94
4.00	256.00	980.14
5.00	625.00	806.77
6.00	1,296.00	719.72
7.00	2,401.00	3,142.90
8.00	4,096.00	5,830.59
9.00	6,561.00	8,408.08
10.00	10,000.00	8,833.27
11.00	14,641.00	$24,\!506.23$
12.00	20,736.00	23,564.77
13.00	28,561.00	23,480.56
14.00	38,416.00	19,291.35
15.00	50,625.00	67,606.97
16.00	65,536.00	64,802.90
17.00	$83{,}521.00$	83,203.28
18.00	104,976.00	128,786.91
19.00	130,321.00	154,355.33
20.00	160,000.00	179,868.25

The data in Table [3.20](#page-64-0) was generated as $y = x^4 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 1)$. Constructing a straightforward linear regression model $y = \beta_0 + x\beta_1$ (*cf.*

Table 3.20: Example: Variable transformation

[3.9\)](#page-14-0) yields an expectedly poor fit depicted in Fig. [3.12a](#page-65-0) with $R^2 = 0.72$.

Performing a simple variable transformation, $\tilde{x} = x^4$ and applying a "generalized" linear model $y = \beta_0 + \beta_1 \tilde{x}$ results in a much better fit with $R^2 = 0.98$, as can be seen in Fig. [3.12b.](#page-65-0)

The code for generating Fig. [3.12](#page-65-0) is presented in Listing [3.7.](#page-66-0)

3.9 Including interaction terms in the model

Common sense suggests that an optimal choice among models with approximately equal performance characteristics is the one that has the fewest "moving parts". This principal is often (simplistically) referred to as O_c cam's razor[\[36\]](#page-218-0) and quoted as "Numquam ponenda est pluralitas sine necessitate" (Plurality must never be posited without necessity), and "Frustra fit

Transformation of variables: y = a * x

Figure 3.12: Example: variable transformation from x to x^4 .

```
\lim_{\delta} M \circ d \leq \text{function}(x, y, \text{fn}, \text{main}, \text{xlab}, \text{tx}, \text{y})ty ) {
   b \leftarrow \text{fn}(\mathbf{x})\text{lm} <\!\!\!-\text{ lm}(\begin{array}{c c c} \text{y} \end{array}^{\!\!\!-} \text{b} \begin{array}{c c} \text{)}\text{coef} \leftarrow \text{coef}(\text{lm})yHat \leftarrow x \ast coef [2] + coef [1]
   plot( b, y, main = main, col = 'magenta',xl ab=xl ab )
   abline ( coef=coef, col='blue' )a \leftarrow sprintf ( "%.2f", \text{coef}[2] )
  b \leftarrow sprintf( "%.2f", coef[1])
   snb \leftarrow ifelse (sign (coef [1] ) = 1, "+",
       " " \left(" \right)"
   text (tx, ty[1], bquote( paste( hat( y))," =", \ldots (a), "x", \ldots (snb), \ldots (b) ) )text (tx, ty[2], bquote( paste( "y =", hat(y ), "+", epsilon ) ) )
   R2 \leq sprintf ( "%.2f",
       \textbf{summary}(\textbf{lm})\r. squared )
   text (tx, ty [3], bquote (paste (R<sup>\hat{z}</sup>, v = v,
        . (R2) ) )}
\textbf{set}. seed (1)x \leq -1:20xR \leftarrow \text{rnorm}(1:20)y \leq (x + xR)^2mt < "Transformation of variables : y = a *"
ty \leftarrow c( 1e5, 0.9e5, 0.8e5)
\lim_{x \to \infty} M \circ d(x, y, I, \text{ paste}(\text{mt}, \text{''x}^{\text{''}}), \text{''x}^{\text{''}}, 5,ty )
\lim_{x \to \infty} I(x, y, function(x) \{x^2\}, b(x)\textbf{paste}(\ldots(\text{mt}), \ldots \text{x}^4)), bquote(\text{x}^4),
      2e4, ty)
df \leftarrow data . frame( x=x, x.4=x^4, y=sprint)"\%6.2 f" , y )write \text{csv}(\text{df}, \text{''}./\text{VarTran.} \text{csv''})
```
Listing 3.7: Example: R code for linear regression.

per plura quod potest fieri per pauciora" (It is futile to do with more what can be done with less) $\left[\frac{32}{2}\right]$. In agreement with this principle, we generally prefer linear models to their nonlinear counterparts as long as their performance metrics do not differ significantly. There are cases, however, when a linear model simply will not do (see, e.g., the example in Section [3.8\)](#page-63-0). We are not aware of any universal recipe for selecting a specific variable transformation in every possible instance. If there are sufficient reasons to suspect from general subject domain considerations that predictive variables may influence each other, introducing [interaction terms](#page-10-0) may improve model performance.

Table [3.21](#page-67-0) illustrates a contrived example of hospitalization data for a hypothetical population of patients. For each patient in Table [3.21,](#page-67-0) both age

Table 3.21: Example: Hypothetical hospitalizations.

and sex were generated randomly, and only females whose age is at or above the median age of the sample less 5 were hospitalized^{[1](#page-67-1)}. Since the data is random by construction, we are at liberty to use the first 20 rows of the table for training and the remaining 10 rows for testing our models. The results

¹The median age of the sample is 69, therefore all females over 64 have $hospitalization = 1.$

of applying a strictly linear model of the form *hospitalization* $\sim age + sex$ to the testing dataset are presented in Fig. [3.13.](#page-68-0) The results of applying a

Figure 3.13: AUC, F_1 [score](#page-10-1) score and [Matthews' correlation coefficient](#page-10-2) of the strictly linear logistic regression model for the hypothetical hospitalization example in Table [3.21.](#page-67-0)

linear model with an [interaction term](#page-10-0) of the form *hospitalization* \sim age + $sex + age \times sex$ to the testing dataset are presented in Fig. [3.14.](#page-70-0) Not surprisingly, the performance of the model without the interaction terms (ROC curve AUC of 0.78 in Fig [3.13\)](#page-68-0) is inferior to that of the model with interaction terms included (ROC curve AUC of 1.00 in Fig [3.14\)](#page-70-0), and the use of the more complicated model is justified.

The code for generating Figs. [3.13](#page-68-0) and [3.14](#page-70-0) is presented in Listing [3.8.](#page-69-0)

3.10 Model validation

Once a model has been developed, it has to be validated to ensure that it meets development specifications. Regardless of the type of the model, it has

```
\lim_{\delta} \log \frac{1}{\delta} function ( train, test, inclearly outCol, sep,
     main ) {
  form \leq formula (paste ( outCol, "<sup>\sim</sup>", paste ( inclCol,
        collapse = sep ) )
  \gammagm \leq glm( form, data=train, family='binomial')
  prediction \leq predict (gm, test)
  perf \leq auc. perf. base ( prediction, test [, outCol],
      text=main )
}
\textbf{set}. seed (1)n \ensuremath{\leftarrow} 30
id \leq 1:n\gamma gender \leq rnorm(id)age \le round (70 + 10 * \text{norm}(\text{id}))sex \leq ifelse ( gender \leq 0, "M", "F" )
y \leftarrow ifelse( ( age – median( age ) ) * ifelse( sex ==
    \langle W', 0, 1 \rangle \leq -5, 0, 1mt < "Interaction _term : _age _* _gender"
data \leq data frame [ ID=id , age=age , sex=sex ,
    h \circ \text{spitalization} = y)
trainRows \leq -1: round (n * 2 / 3)testRows \leftarrow ( max( trainRows )+1 ):n
test \leftarrow data [testRows, ]
train \leftarrow data [train Rows, ]
main \leq "Hospitalization model performance, strictly
    linear_structure"
\lim_{\mathrm{Mod}(\mathrm{train}, \mathrm{test}, \mathrm{c}(\mathrm{''age''}, \mathrm{''sex''})),h o spitalization", '+', main )
main \leq "Hospitalization model performance,
    interaction_terms_included"
\lim_{\text{Mod} \text{train}}, test, \mathbf{c} ( "age", "sex" ),
    h o spitalization", '*', main )
write \text{csv}(\text{data}, \text{''}./\text{IntTermEx}.\text{csv''})
```
Listing 3.8: Example: Hypothetical hospitalizations.

Figure 3.14: AUC, F_1 [score](#page-10-1) score and [Matthews' correlation coefficient](#page-10-2) of the logistic regression model with a cross term for the hypothetical hospitalization example in Table [3.21.](#page-67-0)

to be cross-validated on an independent data set, and the results compared with the training dataset to detect possible under- or overfitting. Specific validation methods for the types of model most commonly used by Clinical Analytics are described in the rest of this section.

3.10.1 Linear regression

Linear regression assumes the existence of a linear relationship between the input variables and the observed output. In general, a successful model must satisfy several requirements to be considered acceptable as a predictive tool [\[23\]](#page-216-2):

i sufficiently high R^2 (typically, at least 0.7) - this will confirm that a large proportion of variation in the dependent variable can be explained by the variation in the independent variable(s);

- ii reasonably good visual fit between the straight line predicted by the model and the actual functional relationship between the dependent and independent variables;
- iii sufficiently random residuals (at least no noticeable trend)

Once these requirements have been satisfied, the model can be deemed sufficiently accurate for our needs.

3.10.2 Logistic regression

Logistic regression is a classification model and thus needs to be evaluated on its ability to predict the outcome of interest. One of the most intuitive and widely accepted techniques for this purpose is computing the area under the receiver operating characteristics (ROC) curve. We adopt it as a universal measure of fit for classification models of any nature, including logistic regression. In a typical example of time-dependent data the preferred way is to proceed as follows:

- a build a regression model on the selected training set (80% of all data);
- b use the model to predict outcomes on the testing set (20% of all data);
- c compute the area under the curve (AUC) for the corresponding ROC;
- d if the AUC is acceptable, separate the dataset onto the "old" and "new" data (e.g., all years up to 1 year ago and the most recent year) and repeat the test;
- e if AUCs from different datasets are comparable and the differences between them can be reasonably explained, accept the model, otherwise, go back to the drawing board and repeat.

If the model allows backward transition from the outcome of interest (admissions), the training and test datasets can be generated from patient data using multiple observations of the same patient; in the opposite case (mortality), a random data point is chosen from the patient's time-dependent data. This approach can be justified by observing that if a patient can experience the outcome of interest multiple times, each encounter can be viewed as an independent event with a possible outcome of interest. If a patient can only experience the outcome of interest once, the use of the same patient's data accumulated over the years violates the assumption of
independence $[11]$ between observations^{[1](#page-72-0)} and, additionally, ascribes disproportionally high weight to those who did not experience such outcome thus leading to potential "survivor bias" $[13]^2$ $[13]^2$ $[13]^2$.

In order to provide confidence interval boundaries for AUC to facilitate the comparison of model quality, an appropriate estimation technique needs to be selected. The most accurate estimates are based on the parametric assumption of binormality for the AUC curve [\[37\]](#page-218-0). Such an assumption is not unduly restrictive for large datasets, and the obtained estimates employ the usual z-statistic argument. When the number of positive outcomes is relatively small^{[3](#page-72-2)}, a semi-parametric or nonparametric estimate may be desirable. For our purposes, we deem it sufficient to construct the confidence interval for the AUCs by using repeated sampling as described in step [2](#page-75-0) of the algorithm in Section [3.10.3.](#page-74-0)

Other measures of goodness-of-fit include (see Section [3.12](#page-76-0) below) F_1 F_1 [score](#page-10-0) and [Matthews' correlation coefficient](#page-10-1). These are presented as supplementary metrics for the purpose of identifying the optimal balance between [true positive rate](#page-9-0) and [specificity](#page-10-2) and usually complement each other.

Continuing with the example in Section [3.7.1,](#page-30-0) Fig. 3.15^4 3.15^4 3.15^4 presents the AUC, F_1 [score](#page-10-0) and [Matthews' correlation coefficient](#page-10-1) for the logistic regression model for predicting hospitalizations in COPD patients previously referenced in Table $3.19⁵$ $3.19⁵$ $3.19⁵$ $3.19⁵$. As can be seen from Fig. 3.15 , the AUC for the model in question is approximately 0.75. The optimal balance between sensitivity and specificity is attained at the cutoff point of approximately 10% of the population. In other words, it appears optimal to flag approximately 1/10th of the patients as being at high risk of admission for COPD-related reasons and, if the objective is efficient case management, concentrate limited resources allocated to this task on this subgroup.

It is considered good practice to compare the results of a developed model with a benchmark "null hypothesis" option whenever possible. For example, if the object of our investigation is assessment of relative hospital-

¹Clearly, if a patient's clinical data can be observed in year 3, it implies that he or she was alive in years 1 and 2.

 $2²$ An alternative opinion [\[30\]](#page-217-0) states that conditional probability of survival embedded in "person-periods" allows for their treatment as if they were independent. Out of abundance of caution, we chose not to adopt this argument. Using the [Cox proportional hazard model](#page-24-0) or generalized estimating equations [\[19\]](#page-216-1) (GEE) eliminates such controversy.

³30 or fewer for each type of outcome of interest for moderate AUCs and 150 or fewer for $AUC \geq 0.95$

⁴Fig. [3.15](#page-73-0) was generated using run.glm.model presented in Appendix [E.4](#page-137-0) and illustrated by Appendix [C.](#page-115-0)

⁵Model performance metrics were calculated on the test dataset.

COPD model validation for dates between 2010 and 2014 , test = 0.2 of total sensitivity threshold (% of population flagged) = 0.05

Figure 3.15: AUC, F_1 [score](#page-10-0) score and [Matthews' correlation coefficient](#page-10-1) of the logistic regression model for COPD.

ization risk for a group of patients, the corresponding benchmark could be random selection from the total population of a sample equal in size to our group. Concretely, suppose that we have developed such a model based on the Elixhauser approach $[10]$ and selected a "naïve random" benchmark as described above. Table [3.22](#page-74-1) summarizes the results of applying each model to the total patient population and selecting 1,000 with the highest risk $score¹$ $score¹$ $score¹$. . The superiority of the Elixhauser model is evident: 24.4% of the

Model	Hospitalizations related to CHF, CVA, COPD, CAD or DM Foot, % of total	Observational or Inpatient Hospitalizations (Non-Pregnancy $/$ Trauma), $%$ of total	AUC
Random	0.80	8.20	0.50
guess Logistic regression	24.40	57.60	0.93

Table 3.22: Example: Comparison of the Elixhauser admission model with the random selection benchmark for 1,000 riskiest patients.

1,000 patients most likely to be admitted were actually admitted to the hospital during the subsequent year for specified diagnoses, compared to only 0.8% of those selected randomly. For general admissions those figures are 8.2% and 57.6% respectively. AUC comparison yields 0.5 for the random guess (as expected) and 0.93 for the Elixhauser model (excellent).

3.10.3 Validation of temporal datasets^{[2](#page-74-3)}

When working with patient data, it is common to consider time-dependent outcomes for the same individual as separate dataset entries unless an outcome of interest presents an absorbing boundary, i.e., is irreversible (e.g., in mortality risk modeling^{[3](#page-74-4)}). It is thus pertinent to ask what set of tests is sufficient to convince a reasonably skeptical examiner^{[4](#page-74-5)} that a newly devel-

¹i.e., "probability of admission"; this "probability" should be understood in a relative sense.

²In our effort to keep up with contemporary technical literature, we favor the spelling of dataset over data set (cf. database vs. now obsolete data base).

³We are considering mortality purely from the point of view of modern medicine. 4 see, e.g., [\[24\]](#page-217-1)

oped model works universally well under practical circumstances. While the answer to this question is often subjective, the following testing routine has so far yielded satisfactory results for the purpose of identifying intervention candidates in the total population health management program:

- 1. separate the final usable dataset into the training and testing portions by designating a random 20% sample for testing and the remaining 80% for training the model;
- 2. repeatedly run the final model (as described by in Fig. [3.7\)](#page-31-0) on training datasets obtained at the previous step until satisfied with the goodness-of-fit statistics;
- 3. execute the forward test as
	- (a) train the model on the first available period $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ of data;
	- (b) from the remaining period data, select the entries that are appropriate under the assumption that no posterior information is available and no patient data is given disproportional weight in the model, e.g., by selecting only one period data point of patient data at random in the mortality model;
	- (c) refine the original model as necessary until AUCs for testing period data are satisfactory;
- 4. execute the backward test as
	- (a) train the model on the last available period of data;
	- (b) from the remaining period data, select the entries in the same way as for the forward test;
	- (c) refine the original model as necessary until AUCs for testing period data are satisfactory;
- 5. execute the mid history test as
	- (a) train the model on the first and last available periods of data;
	- (b) from the remaining period data, select the entries in the same way as for the forward test;
	- (c) refine the original model as necessary until AUCs for testing period data are satisfactory;

 $\frac{1}{1}$ most often, year

- 6. execute the last available period test as
	- (a) from all periods except the last one for which full outcome of interest data is available, select the entries in the same way as for the forward test;
	- (b) train the model on the data selected in the preceding step;
	- (c) test the model on the last period for which full outcome of interest data is available;
	- (d) refine the original model as necessary until AUCs for testing period data are satisfactory;

3.11 Predicting future outcomes

Once the test program outlined in Section [3.10.3](#page-74-0) has yielded consistent AUC estimates and reasonably stable coefficients^{[1](#page-76-1)}, the "production", or "forward-looking", model is constructed by training the algorithm on the whole dataset^{[2](#page-76-2)}.

Sample code for an implementation of the prediction algorithm is given in Appendices [C](#page-115-0) ("vanilla" logistic regression), [D](#page-127-0) (Cox proportional hazard model) and [E.4.](#page-137-0) The algorithms apply the respective vectors of regression coefficients [\(3.19\)](#page-22-0) or [\(3.29\)](#page-25-0) to generate the appropriate risk score ("probability" of outcome of interest for linear regression or hazard function for the Cox proportional hazard model). Once a risk rating has been assigned to every member of the test sample, they can be ranked by their ratings in descending order. N riskiest members can then be selected from the population as candidates for intervention.

Table [3.23](#page-77-0) presents 10 patients at highest risk of COPD admission from the test population of 2,049 in the ongoing example from Section [3.7.1.](#page-30-0)

In Table [3.23](#page-77-0) "Risk" is the probability of outcome of interest given by the logistic regression model.

3.12 Evaluating model performance

The Clinical Analytics team uses [receiver operating characteristic \(ROC\)](#page-10-3) [curve](#page-10-3) as the main metric for evaluating the performance of a logistic regression or Cox proportional hazard model. For evaluating the optimal balance

¹Consistency and stability here are determined from business and "common sense" considerations rather than mathematical estimates.

²i.e., by expanding the training dataset in the first step of the algorithm to 100% of the data and shrinking the testing dataset to nothing.

Patient	Risk
	$0.98\,$
$\overline{2}$	0.97
3	0.97
4	$0.96\,$
5	$0.95\,$
6	$\,0.94$
	$\,0.94$
8	$\rm 0.93$
9	$\rm 0.92$
10	$\rm 0.92$

Table 3.23: Example: 10 patients at highest risk of COPD admission from a population of 2,049.

between [true positive rate](#page-9-0) and [specificity,](#page-10-2) F_1 [score](#page-10-0) and [Matthews' correla](#page-10-1)[tion coefficient](#page-10-1) are also included.

3.12.1 Receiver operating characteristics curve

ROC curves are an essential tool for assessing the quality of a classification model. Table [3.24](#page-78-0) illustrates the relationship between the actual and predicted outcomes as reflected by such curves.

Table 3.24: Tabularized relations between truth/falseness of the null hypothesis and outcomes of the test

ROC curve graphs are used for internal research purposes and for presentation to technical audiences familiar with this concept. The ROC curve for a survival model describing the mortality risk in heart failure patients is presented as an example in Fig. [3.16.](#page-79-0)

Figure 3.16: Sample [receiver operating characteristic \(ROC\) curve](#page-10-3) graph.

An example of a plot combining ROC, F_1 [score](#page-10-0) and [Matthews' correla](#page-10-1)[tion coefficient](#page-10-1) was presented earlier in Fig. [3.6](#page-27-0)

For historical reasons, the Clinical Analytics team has found it more instructive and easily digestible for executive and practitioner audiences to employ combined [lift curve](#page-10-4) / [positive predictive value](#page-9-3) graphs as a tool for visualizing the quality of a predictive model. [lift curve](#page-10-4) / [positive predictive](#page-9-3) [value](#page-9-3) graphs are presented double-scaled with [true positive rate](#page-9-0) plotted on the left in red, and [positive predictive value](#page-9-3) on the right in blue. The abscissa $(x\text{-axis})$ represents the percentage of the (test) population that was classified by the model as having an outcome of interest. The combined

graph for a logistic heart failure admission prediction model is presented as an example in Fig. [3.17.](#page-80-0)

Figure 3.17: Sample [lift curve](#page-10-4) graph.

As follows from Fig. [3.17,](#page-80-0) should the riskiest 5% of the patients selected by the model be chosen for intervention, true positive rate in that population will be approximately 50%. This rate reaches approximately 10% in the general population, hence the [lift](#page-10-5) achieved by applying the model for the top 5% is close to 5.

3.12.2 Summary of model performance metrics

In order to evaluate model performance, it is helpful to summarize some of the relevant model metrics in one place. Table [3.25](#page-81-0) is an extension of Table [3.23](#page-77-0) that includes the corresponding performance parameters calculated for the same 10 patients on the original test dataset.

In Table [3.23](#page-77-0) columns have the following meanings:

Patient	Risk	Actual	#	$\%$	PPV	specificity	lift
		out-	flagged	flagged			
		come					
1	0.98	1	1	0.05%	1.00	0.00	9.31
$\overline{2}$	0.97	θ	$\overline{2}$	0.10%	0.50	0.00	4.66
3	0.97	θ	3	0.15%	0.33	0.00	3.10
4	0.96	θ	4	0.20%	0.25	0.00	2.33
5	0.95	1	5	0.24%	0.40	0.01	3.73
6	0.94	1	6	0.29%	0.50	0.01	4.66
7	0.94	1	7	0.34%	0.57	0.02	5.32
8	0.93	1	8	0.39%	0.63	0.02	5.82
9	0.92	$\overline{0}$	9	0.44%	0.56	0.02	5.17
10	0.92	0	10	0.49%	0.50	0.02	4.66

Table 3.25: Example: 10 patients at highest risk of COPD admission from a population of 2,049 with model performance metrics included.

The output template featured in Table [3.25](#page-81-0) is adopted by the Clinical Analytics team as the preferred way of illustrating the model performance. This layout is easy to present and explain to the upper management in order to facilitate operational business decisions, including those concerning resource allocation.

If the model with an irreversible outcome described in Section [B](#page-110-0) is tested on a randomly sampled dataset that includes a single entry for surviving patients, an argument can be made that the [positive predictive value](#page-9-3) of the model in Table [3.25](#page-81-0) is inflated by underweighting survivor's data. This concern can be addressed by selecting the data from the most recent time period (e.g., year) as the test dataset^{[1](#page-81-1)} and using it to calculate the corresponding model performance metrics in this table. If this approach is followed, all

¹i.e., using all data, excluding the most recent period, with one randomly selected entry per each multiple-year survivor as the training dataset.

data in the test population will be reduced to a single entry per patient with equal weights. Linear regression models described in Section [3.2](#page-13-0) and Cox proportional hazard models described in Section [3.4](#page-24-0) do not require this adjustment.

4 Presentation of results

4.1 Output data storage

The storage model for output data should facilitate the achievement of the following objectives:

- keep project-related data together in a form that is
	- compact,
	- logical,
	- readable and
	- easily accessible;
- make it easy to perform unit testing;
- help compare the results of incremental changes in the code;
- support creating time snapshots of the model for auditing purposes.

The above-mentioned objectives can be accomplished more easily if

- 1. readable output files are stored in the Results directory (as mentioned in Section 6.2),
- 2. graphs (PDFs, JPGs etc.) are stored in the Graphs subdirectory of Results
- 3. both readable files and graphs are cataloged by date of the corresponding program run in separate directories named yyyy-mm-dd with appropriate commentary appended separated by underscores (e.g., 2014-05-14 Hip Knee)

4.2 Output data naming conventions

All output files are named using abbreviated functional descriptions of their contents and are date stamped for subsequent reference. Naming conventions for output files are listed in Table [4.1.](#page-83-0)

Table 4.1: Naming convention for output files.

4.3 Presentation format

Most of the research projects carried out by the Department of Clinical Analytics produce data outcome that can best be digested by the audience if presented in the form of tables and graphs. While it is difficult to prescribe a universal format for a successful table, it is nevertheless desirable to establish the broadest possible documentation standards some of which are listed below.

I Output files

- i numeric output that will be ingested into Excel or R for further processing should be stored as .csv files,
- ii plain text files should be avoided whenever possible,
- iii if extended markup is desired (e.g., web browser output), XML output is appropriate,
- iv where extensive data post-processing manipulation is anticipated, a (sandbox) database table for the results is desirable;
- II Graphs
	- i preferably, graphs should be stored as PDF files with axes, legend and tick marks clearly labeled and easily readable (in general, 12 pts. or larger),
	- ii landscape orientation is preferred,
	- iii legend coloring scheme should be consistent with that of the plot itself.

Documentation not requiring extensive mathematical formulae, sophisticated graphics or cross-referencing can be created in Microsoft Word. Papers that do require substantial typesetting should be created in LATEX, if possible.

5 Data storage

5.1 Input data storage

Interim input data can be stored as text, CSV or XML files, Excel spreadsheets or sandbox databases. For consistency, it is preferable to keep input data in the "Data" folder of the corresponding project folder. When the data is intended for use by other people, it is helpful to use a single format that can be easily picked up and converted into a form convenient for its consumer. For most practical purposes, CSV is preferred. If the data is stored in a sandbox database, SQL scripts used for data extraction can be stored in the "Code" folder of the project. If the creation of a shared internal database is desirable and possible for the purpose of the project, it can be set up on the common server with tables named for specific tasks.

5.1.1 Nomenclature of input variables

In an effort to standardize the nomenclature of input variables, a suggested list of common names is presented in Table [5.1.](#page-84-0)

		now as first proceed as page
Predictive variable	Type	Meaning
$BNP = 48MO$	continuous	brain natriuretic peptide,
		48 months ago
BNP_MR	continuous	brain natriuretic peptide,
CAD_IND	indicator	most recent cardioarterial disease
CALCCHANBLOCKER_-	indicator	active calcium channel
PRESCRIBED		blocker prescription
CANCER_DX	indicator	cancer diagnosis
CANCER_IND	indicator	cancer
CARD_MOST_SEEN_IND	indicator	most seen by a cardiologist
CARDO ₋₂₄ MM _{-VISIT}	continuous	$#$ of times seen by a
		cardiologist in the last 24
CARDO ₋₁₂ MM _{-VISIT}	continuous	months $#$ of times seen by a
		cardiologist in the last 12
CHOL_06_MO	continuous	months total cholesterol level, 6
CHOL_12_MO	continuous	months ago total cholesterol level, 12
CHOL_24_MO	continuous	months ago total cholesterol level, 24
		months ago
CHOL_36_MO	continuous	total cholesterol level, 36
CHOL_48_MO	continuous	months ago total cholesterol level, 48
		months ago
CHOL_MR	continuous	total cholesterol level,
COMBOANTHYP_PRESCRIBED	indicator	most recent active combined
		antihypertensive
COPD_IND	indicator	prescription indicator chronic obstructive
		pulmonary disorder
CREAT_06_MO	continuous	creatinine, 6 months ago
CREAT_12_MO	continuous	creatinine, 12 months ago
CREAT_24_MO	continuous	creatinine, 24 months ago
CREAT_36_MO	continuous	creatinine, 36 months ago
CREAT_48_MO	continuous	creatinine, 48 months ago

Table 5.1 – *Continued from previous page*

Table 5.1 – Continued from previous page

Predictive variable	Type	Meaning
CREAT_MR	continuous	creatinine, most recent
CSO_EVER	continuous	do-not-resuscitate standing
DAYS_SINCE_LAST_EF	continuous	order at any time $#$ of days since the last
		ejection fraction test was
DBP_{-06} MO	continuous	${\rm ordered}$ diastolic blood pressure, 6
DBP_{-12} _MO	continuous	months ago diastolic blood pressure, 12
DBP_24_MO	continuous	months ago diastolic blood pressure, 24
$DBP_{-.36}$ MO	continuous	months ago diastolic blood pressure, 36
DBP_48_MO	continuous	months ago diastolic blood pressure, 48
DBP_MR	continuous	months ago diastolic blood pressure,
DEATH_365_DAYS	indicator	most recent death occurred within the 365 days following
DEATH_365D_IND	indicator	AS_OF_DATE death occurred within the 365 days following
DEATH AS OF DATE	date	AS_OF_DATE date of death if occurred
DEATH_DATE	date	within the 365 days following AS_OF_DATE date of death
DEM_IND	indicator	dementia
DIAB_IND	indicator	diabetes
DIGOXIN_PRESCRIBED	indicator	active digoxin prescription
DISCHARGED_DISP_30_DAYS	continuous	$#$ of hospital discharges in
DISCHARGED_DISP_31_365_DAYS	continuous	the last 30 days $#$ of hospital discharges between the last 31 and
DISCHARGED_DISP_365_DAYS	continuous	365 days $#$ of hospital discharges in the last 365 days

91 ©2016 NorthShore University HealthSystem

Predictive variable

Table $5.1 - Countinued$ from previous page

Continued on next page

Predictive variable	Type	$\frac{1}{2}$ Meaning
NUM_HOSP_365_DAYS	continuous	$#$ of days spent in the
		hospital between in the
		last ₃₀
NUM_HOSP_365_DAYS_COPD	continuous	$#$ of days spent in the
		hospital for COPD in the
		last 365 days
NUM_HOSP_365_DAYS_ICU	continuous	$#$ of days spent in the
		intensive care unit in the
NUM_HOSP_365_DAYS_PNEU		last 365 days
	continuous	$#$ of days spent in the
		hospital for pneumonia in
NUM_KCC_VISIT	continuous	the last 365 days $#$ of visits to Kellogg
		Cancer Center
NUM_MISSED_APPTS_3_YRS	continuous	$#$ of missed appointments
		in the last 3 years
NUM_MISSED_APPTS_365	continuous	$#$ of missed appointments
		last year
NUM_UNIQUE_SPECIALTIES	continuous	$#$ of unique specialties of
		physicians seen by the
		patient
$O2$ _IND	indicator	active oxygen prescription
ORALNITRATE_PRESCRIBED	indicator	indicator active oral nitrate
		prescription
ORALVASODILSPERF-	indicator	active oral vasodilator
PRESCRIBED		prescription indicator
PACEMAKER_IND	indicator	Pacemaker implanted
PAT_AGE_YRS	continuous	patient age
PAT_MRN_ID	ID	patient MRN ID
PCP_ID	ID	primary care physician ID
PCP_MG_IND	indicator	has a primary care
		physician from the medical
		group
PCP_PRAC_NAME	categorical	primary care physician
		practice name
PCP_PRIM_SPEC	categorical	primary care physician
		specialty

Table $5.1 - Countinued$ from previous page

5.2 Formatting and storage of intermediate results

During the execution of a predictive analytics script, intermediate files are stored in the project directory tree in the directory titled "Results/Interim". Intermediate plots are stored as PDF files, tables are saved as CSV files. All output files are named using abbreviate functional descriptions of their contents and are date stamped in order to preserve research history and ensure reproducibility of the results. Naming conventions for interim output files are listed in Table [5.2.](#page-96-0)

6 Coding practices

6.1 Revision control

Revision control is essential for incremental and cooperative development. Git is currently the suggested tool of choice for implementing a robust framework for sharing and improving the code. A centralized local Git repository for the Clinical Analytics team is not available at the time of this writing (February 2020), however, interim measures can be taken to ensure that changes made to the code are at least traceable to its developer(s). Collaboration Portal is currently used as a proxy for the centralized code repository, and all current code should periodically be placed on the portal to facilitate quality control and cross-training of the department team members. In preparation for the implementation of the centralized Git repository, all team members should implement Git framework on their local computers and regularly check in working code with appropriate descriptive comments. If this practice is followed, the creation of a centralized Git node will be reduced to pushing individual repositories to the designated location and should take place with minimum resource diversion from higher priority tasks.

Once the central repository is set up, one person (presumably, the project manager) should be designated as the administrator with one or two team members serving as backup resources fully cross-trained on the system functionality. The following is a suggested list of good repository maintenance practices in the form of do's:

- DO take regular snapshots of COMPILABLE CODE;
- DO write concise, informative, itemized comments for each commit highlighting the most significant changes from the previous version;
- DO minimize the time you keep the code checked out;

Output type	File type	Naming convention	Example
Univariate odds ratios	.csv	OR [yyyy_mm_-	OR_2014_10_28.csv
for indicator variables		dd].csv	
Univariate odds ratios	.csv	UniOR_[yyyy_-	UniOR_2014_10_-
for all variables		mm_dd].csv	28 ^{.csv}
Odds ratios for specific	.csv	[Variable Name]_-	Ethnicity ₋₂₀₁₄ -
categorical variables		[yyyy_mm_dd].csv	10 ₋₂₈ .csv.
			MaritalStatus ₋
Multivariate odds			2014 ₋₁₀₋₂₈ .csv
ratios for indicator	.csv	OR_All_[yyyy_-	OR_2014_10_28.csv
variables		mm_dd].csv	
Highly correlated	.csv	CorInd_Prior_-	CorInd_Prior_-
indicator variables		[yyyy_mm_dd].csv	2014 ₋₁₂₋₁₁ .csv
displayed as a matrix			
Highly correlated	.csv	$CorInd$ -	CorInd ₋
indicator variables		PriorTable_[yyyy_-	PriorTable_2014_-
displayed as pairs		mm_dd].csv	12 ₋₁₁ .csv
Highly correlated	.csv	CorNum_Prior_-	CorNum_Prior_-
continuous / interval		[yyyy_mm_dd].csv	2014 ₋₁₂₋₁₁ .csv
variables displayed as			
a matrix Highly correlated	.csv	$CorNum$ -	CorNum-
continuous / interval		PriorTable_[yyyy_-	PriorTable ₋₂₀₁₄ -
variables displayed as		mm_dd].csv	12 ₋₁₁ .csv
pairs			
Baseline hypothesis	.csv	$NullHyp_{xyxyy}$ -	NullHyp_2014_10_-
quality data		mm_dd].csv	28 .csv
Correlation matrix	.pdf	Corr_Ind_[yyyy_-	Corr_Ind_2014_12_
level plot for indicator		mm_dd].pdf	11.pdf
variables Correlation matrix	.pdf	Corr_Num_[yyyy_-	Corr_Num_2014_-
level plot for		mm_dd].pdf	12.11.pdf
continuous / interval			
variables Correlation matrix	.pdf	Corr_Mat_All_-	Corr_Mat_All_-
level plot for all		[yyyy_mm_dd].pdf	2014 ₋₁₂₋₁₁ .pdf
variables			

Table 5.2: Naming convention for interim output files.

- DO conduct unit tests before checking in the code to make sure it is backward compatible.
- DO merge branches at the first opportunity.

and don'ts:

- DON'T check in code that does not compile;
- DON'T check in code that will break the build;
- DON'T store the executable, compiled, auxiliary or any other binary files with the source;
- DON'T create more branches than necessary.

(see, e.g., [\[9\]](#page-215-2), [\[4\]](#page-215-3), [\[20\]](#page-216-2)).

6.2 Code storage

The following is a suggested directory structure for storing project code:

- Methodology
	- methodology documents and white papers describing the algorithm;
	- testing and implementation procedures;
	- production implementation requirements;
- Data
	- input data organized by run date, functionality or model version as appropriate;
	- tools (e.g., Excel spreadsheets) for pre-processing input data (if applicable);
- Code
	- project files (if applicable);
	- source code differentiated by language (if applicable):
		- * R
		- * Python
		- * SQL

* C#

- * Other;
- Log
	- log and error files (if applicable);

• Results

- output data files by run date, functionality or model version as appropriate;
- graphical output by run date, functionality or model version as appropriate;

6.3 Code review

Peer review is an indispensable code verification and validation tool that also facilitates the development of robust, scalable and reusable code. Once a developer has completed a new release to his or her satisfaction, they should initiate code review with a designated peer. The assignment of peers can be very informal, especially when the new model has been confined to the domain of narrow expertise. It is considered beneficial to the quality of the algorithm to have a person less familiar with the methodology review and, time permitting, replicate the results of the newly shipped release. In the absence of a designated QA department, the only defense against inadvertent flaws in the code is the institution of a process that requires the algorithm's author to fully explain the methodology and coding decisions behind it to "skeptical" colleague. Such colleague should understand the basic concepts but not be biased in any way towards accepting the result. Resources permitting, having more than one person review the code would strengthen the quality control process - but we have to be realistic about what we can expect of ourselves given more pressing time commitments.

Once the code has been review by a designated "tester", it can be tagged as "production version" in the repository thus becoming an official release.

6.4 Naming conventions

If words of command are not clear and distinct, if orders are not thoroughly understood, the general is to blame.

attributed to Sun Tzu[\[34\]](#page-217-2)

Names of objects used throughout the coding code should be clear, concise, consistent and descriptive. Suggested naming conventions are detailed in Table [6.1.](#page-99-0)

$Lan-$	O _b -	Scope	Conflicts	Naming convention	Comment
guage	ject				
	type				
	vari-	any	none	capitalLetterDi-	
	able	scope		viders	
		local	none	capitalLetterDi-	project-specific
				viders	functions not tested
					for generic use
			no	func.that.works	use simple dot
			naming		separation if no
			conflict		external package
			with		functions with the
			external		same name exist
	func-	pack-	packages		
	tion	aged	same	NS.CA.func.that	prepend NS.CA
			name as a	.works	(NorthShore)
			function		Clinical Analytics)
			from an		to a dot-separated
			external		function name
			package		
$\mathbf R$	pack-	global	none	NS.CA.capitalLetter-	mark packages as
	age			Dividers	developed by
					NorthShore Clinical
					Analytics

Table 6.1: Naming conventions

Continued on next page

Lan-	Ob-	Scope	Conflicts	Naming convention	Comment
guage	ject				
	type				
	proj-	global	none	SentenceCase_with_-	abbreviations in
	ect			underscore	ALLCAPS, project
					functionality in
					SentenceCase,
					separation by
					underscores
		local	none	runProjectName.R	highest-level
					function
					("Dispatcher")
			no	packageName.R	minimally
	file		naming		descriptive short
			conflict		names are
			with		encouraged
			external		
		pack-	packages		
		aged	same	NS.CA.packageName	prepend NS.CA to
			name as	.R	the package name
			an		
			external		
			package		

Table 6.1 – *Continued from previous page*

6.5 Writing quality code

The definition of what constitutes quality code in any programming language could be the subject of a lengthy debate that is best carried out away from volatile compounds and other easily inflammable materials. Below follow a few fundamental principles that the original writers of this document believe to be universal and rarely disputed.

6.5.1 R

- Write readable code:
	- create a high level function that calls analytical and auxiliary functions as needed;
	- reference packages only where the use of such packages is required at the lowest level;

- indent your code
- use spaces around operators, after commas, after opening and before closing braces and parentheses;
- wrap long lines at column 80 (remember the punch cards? I'm only partially joking here...);
- use knitr-style comments;
- in a function, first list the required, then the optional parameters.
- Write meaningful comments:
	- in a function
		- * explain what the function is for;
		- * describe input and output arguments;
		- * list any specific parameter values that present special cases.

The mode function in the NS.CA.statUtils package is an example:

```
\# \# \longrightarrow NS.CA. mode \longrightarrow\#H Mode(s) of the distribution
## Usage
### NS .CA. mode ( x , fun=f u n c t i o n ( y ) {y })
## Arguments
\# \# x - matrix or data frame containing the
     distribution(s) (convert to matrix if list)
## fun – function determining which mode to
     select in the multimodal case
NS.CA.mode \leq function (x, \text{ fun}=function(y) \{y\}) {
   ux \leftarrow unique(x)t \le -tabulate (match(x, ux))
   fun ( <u>ux</u> [ <b>which</b> (<b>t</b> = <b>max</b>(<b>t</b> ) ) ] )}
– in a loop
    * mark nested long loops if necessary;
    * document "forks" as appropriate
– in an if-then-else structure
```
* explain what the logic means when necessary;

* mark matching braces as needed.

- Favor sapply, lapply and ddply over for;
- Above all, DO NOT copy and paste! If a piece of code is used more than once, turn it into a function instead.
- Avoid rbind wherever possible since it can be slow.
- Reduce early and often, e.g.,

```
\# aggregated charges and costs
```

```
totalChgAll [[aggregator]] \leq Reduce (function (\ldots)merge(\ldots, by=totalGroupBy, all=T, suffixes=totSuff, totChgCostSNotNull)
```
Accepted naming conventions are listed in Table [6.1.](#page-99-0)

6.6 Testing and QA

The design stage of application development is an excellent time to ensure that subsequent testing and validation of the model progress as smoothly as possible. Many of the issues arising at a later stage can be mitigated by ensuring open communication channels between development and production teams by remembering that an ounce of prevention is worth a pound of cure:

- have a list of candidate predictor variables for the research project;
- find out which variables are available from the historical dataset and which are not;
	- if a variable has been consistently available throughout history, find out whether its meaning has changed;
	- if a variable has appeared only recently, find out how it can be synthesized from past data. Ensure that the way you are replicating the new variable from the data warehouse is consistent with the way it is currently being generated. It will save you a lot of time and headaches.
- ensure that the test data set can be easily replicated by the data warehouse team;

- if an easy, one-to-one mapping between your dataset and theirs is hard to achieve, change your dataset, if possible;
- if your dataset must be constructed in a specific way, get the data warehouse team started on matching your data extract as early as possible.

An application can be productionalized efficiently not only through writing correct, clean and efficient code but also through carrying out as many testing and data reconciliation iterations as possible within a limited time frame. This can be achieved by following the general guidelines below:

- 1. develop unit test framework whenever possible;
- 2. fix and freeze the input data for reconciliation testing to ensure reproducible test results;
	- (a) hard-code seeds for the code dependent on random number generators;
	- (b) take a snapshot of the input data at a point in the past and use it for subsequent calculations at least until the current round of testing is finished;
- 3. rank all differences between the old and new results in descending order and
- 4. drill down into the "worst offenders" until a satisfactory explanation of the differences can be found and an acceptable level of accuracy can be achieved.

Appendix A Additional tools for data analysis

A.1 Comparing two datasets

Like a home inspector in the world of real estate, a data scientist employed in the area of care standardization has no friends among physicians. In order to avoid being hit from behind by a baseball bat on their way to the car after a long day at the office, he or she must ensure that potentially damning conclusions they reached during the course of the said long day are statistically sound. Here is how:

- i identify potential outliers;
- ii attempt to explain and clean out spurious outliers, e.g., convert dates formed using two-digit years to proper YYYY dates;
- iii remove remaining outliers if you must or incorporate them into your dataset;
- iv backfill missing data;
- v identify and prune datasets that are not statistically significantly different from each other, e.g., physicians' pharmacy charges where the hypothesis about the two providers charging substantially identical amounts cannot be rejected at the 5% level.

There are several tests for determining whether the difference between two or more data sets can be viewed as statistically significant [\[35\]](#page-217-3). A summary $([17],$ $([17],$ $([17],$ parts reproduced by permission from Professor James D. Leeper) is presented in Table [A.1.](#page-105-0)

Table A.1: Statistical tests used to confirm the statistical significance of difference between data sets; partsreproduced from [\[17\]](#page-216-4) by permission from Professor James D. Leeper

 $90\mathrm{I}$

Continued on next page

 $\bigodot\!2016$ North
Shore University Health
System 2016 NorthShore University HealthSystem

107

Continued on next page

Table A.1 – Continued from previous page

	Number of	Independent	Dependent variable	Test	R code example
of	independent	variable type	type		
depen-	variables				
$_{\text{dent}}$					
vari-					
ables					
			ordinal variable or	non-parametric	$cor(x, y$ method="spearman",
			interval variable	correlation:	\ldots) or
				Spearman's ρ or	$cor(x, y,$ method="kendall",
				Kendall's τ	<u>)</u>
			categorical variable	simple logistic	$\overline{\text{glm}(x,\ldots)}$
				regression	
	$1+$ coninuous	continuous	normal	multiple regression	lm(model,)
	and/or $1+$	and/or	(continuous)	analysis of covariance	$\texttt{aov}(\texttt{model}, \dots)$
	categorical	categorical	categorical variable	multiple regression	lm(model,)
	variable	variable		discriminant analysis	MASS:lda(model,) or
					MASS:qda(model,)
	$\mathbf{1}$	categorical	normal	one-way MANOVA	manova(model,)
		variable	(continuous)		
$2+$	$2+$		normal	multivariate multiple	$cor(x, \ldots)$
		any	(continuous)	linear regression	
	$\overline{0}$		normal	factor analysis	$\overline{\text{cor}(x,\ldots)}$
		any	(continuous)		
$2+$	Ω	any	normal	Pearson correlation	$cor(x, \ldots)$
sets of			(continuous)		
$2+$					

 $108\,$
A.1.1 Testing proportions

A question often arises in the course of comparing results of medical treatments, "Are the differences in proportions of outcomes of interest observed in different populations due to chance?" A variation on the same theme is, "Is the difference between the hypothesized and observed proportions of outcomes of interest due to chance?"

In the most general case, sources (e.g., $[22]$) recommend using the **pooled** two-proportion z -test for ascertaining that the difference in percentages of positive outcomes between two samples is not due to chance. It proceeds as follows:

- i formulate the null hypothesis: $H_0: p_1 = p_2$, where $p_i, i = 1, 2$ is the *i*-th proportion of outcomes of interest;
- ii calculate proportions of outcomes of interest in each sample: \hat{p}_1 and \hat{p}_2 ;
- iii calculate the total combined (pooled) proportion of outcomes of interest: $\hat{p} = \frac{n_{p_1} + n_{p_2}}{n_1 + n_2}$ $\frac{p_1+n_{p_2}}{n_1+n_2}$, where n_{p_i} , $i=1,2$ is the number of positive outcomes in the *i*-th sample, n_i , $i = 1, 2$ is the number of observations in the *i*-th sample;
- iv calculate the standard error of the estimated difference $\hat{p}_1 \hat{p}_2$:

$$
SE = \sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)};
$$

- v calculate the z-statistic: $z = \frac{\hat{p}_1 \hat{p}_2}{SE}$ SE
- vi calculate the p−value for the z-statistic;
- vii if the p-value is lower than the chosen threshold (e.g., 5%), reject H_0 , i.e., assume that the samples come from different distributions, otherwise accept it, i.e., assume that the samples came from the same distribution.

This test is generally applicable when the samples are no bigger than 10% of the total population and the numbers of successes and failures exceed 5.

Arguments can be made in favor of using an unpooled statistic since the variances of two samples do not have to be the same (see, e.g., [\[31\]](#page-217-0)). In this case, the null hypothesis is $H_{0unpooled}: p_1-p_2=d_0$, where d_0 is hypothesized difference between the two distributions, and the standard error estimate is

$$
SE_{unpooled} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}},
$$

and the corresponding z-statistic is $\frac{\hat{p}_1 - \hat{p}_2 - d_0}{SE_{unpooled}}$. While there are finer points in arguing for the use of the unpooled test, for most practical cases the samples are assumed to come from the same distribution and the use of the pooled test is justified.

Let us consider a worked example based on the prevalence of blood trans-fusions in two hospitals (pavilions)^{[1](#page-109-0)} for the two-year period between May 1, 2012 and May 1, 2014 as presented in Table $A.2$.

Pavilion		$\#$ of patients $\#$ of transfusions
Pavilion A	5,000	250
Pavilion B	3,000	200

Table A.2: Sample blood transfusion statistics for Q2 FY2014.

Applying our (pooled) algorithm, we get:

$$
n_1 = 5,000,
$$

\n
$$
n_2 = 3,000,
$$

\n
$$
n_{p_1} = 700,
$$

\n
$$
n_{p_2} = 200,
$$

\n
$$
\hat{p_1} = 0.14,
$$

\n
$$
\hat{p_2} = 0.0667,
$$

\n
$$
\hat{p_1} - \hat{p_2} = 0.0733,
$$

\n
$$
\hat{p} = \frac{700 + 200}{5,000 + 3,000} = 0.1125,
$$

\n
$$
SE = \sqrt{0.1125(1 - 0.1125) \left(\frac{1}{700} + \frac{1}{200}\right)} = 0.028,
$$

\n
$$
z = \frac{0.0733}{0.028} = 2.64
$$

\n
$$
p-value = 2\Phi(z) = 2 \times 0.0042 = 0.0084,
$$

where $\Phi(z)$ is the standard normal cumulative distribution function and the coefficient 2 comes from the two-tailed test.

Given the data in the example and the assumptions made in Section [3,](#page-11-0) the null hypothesis H_0 that the difference in proportions of patients receiving blood transfusions between pavilions A and B are highly statistically

 $^1\rm{We}$ will be using the terms "pavilion" and "hospital" interchangeably throughout this document.

significant (at higher than 99% significance level). We must therefore reject the null hypothesis H_0 and adopt the alternative H_A , i.e., assume that those proportions come from different distributions.

Appendix B Sequence of steps for developing a logistic regression model in R

Table [B.1](#page-111-0) outlines the steps to develop a logistic regression model for predicting outcomes of interest or classifying objects and events.

Table B.1: An algorithm for developing ^a logistic regression-based prediction or classification model

 $112\,$

113

Table B.1 – Continued from previous page

Continued on next page

 $114\,$

Appendix C Sample code used to process the running COPD example

In the listing below, the formatting is different from that of the actual code due to a different line length in the typeset font. User-defined packages textttNS.CA.statUtils, NS.CA.dataUtils, NS.CA.dateUtils, NS.CA.modelUtils, NS.CA.plotUtils and NS.CA.mathUtils are defined in Appendix [E.](#page-137-0)

```
### D an iel Cher tok
\# \# (C) 2014 NorthShore University HealthSystem
### All rights reserved
rm( l i s t = l s ( ) )\text{library (debug)}\mathbf{library} ( \mathrm{reshape 2 } )\mathbf{library} \left( \mathbf{date} \right)\mathbf{library} (string r)\mathbf{library} (\text{plyr})library (glmnet)
library (MASS)
\mathbf{library} (scales)
library (lubridate)
\mathbf{library}\left(\text{NS}. \text{CA}.\text{stat} \right)\mathbf{library}\left(\text{NS}. \text{CA}\right. \text{dataUtils}\right)\mathbf{library}\left(\text{NS}. \text{CA}. \text{ date} \text{Utils}\right)library (NS.CA. modelUtils)
\mathbf{library}\left(\text{NS}. \text{CA.}\ \text{plot} \text{U}\text{tils}\right)\mathbf{library}\left(\text{NS}. \text{CA}\ldotp \text{math} \text{U}\text{tils}\right)SPARSE_MIN < 0.2yearCsvName \leq function ( dataDir, name, year ) {
    \textbf{paste}(\text{dataDir}, \text{name}, \text{year}, \text{"}. \text{csv"}, \text{sep} = \text{"})}
# main module
```

```
years \leq 2010:2014today \leq - as . Date ("2014-01-01")
dataDir \leq \</sup>"../Data/"
resultDir \leq "../Results/"
graphDir \leq -\text{ paste}(\text{resultDir}, \text{"Graphs", sep="")}interimDir \leq -\textbf{paste}(\text{resultDir}, "Interim/", \textbf{sep} = "")timeStamp \leftarrow timestamp. from . date ()
# read the input fileCOPDadmRaw <− read . csv ( paste ( dataDir , "COPD ALL ALIVE
    . \csc ", \sec " ) )
outcomes \leftarrow c(
  "INP<sub>-OBS</sub><sub>-COPD</sub>\DeltaDM<sub>-365</sub>\DeltaDAYS",
  "DEATH 365D IND"
)
# all dates will be used later
keyDates \leq sort(unique(as.Date(COPDadmRaw[, "AS_OF_\text{DATE" } | ) )# for\ analysis, use data up to today onlyCOPDadmRaw <− transform( COPDadmRaw, AS OF DATE=as .
   Date (AS_OF_DATE))
COPDadm \leq -subset( COPDadmRaw, AS_OF_DATE \lt today )
# columns irrelevant to the analysis
\text{excludeCol} \leftarrow \text{c}("PATID", "TEN_YR_RISK_PCT", \text{ outcomes}\lceil [ 2 ] \rceil# columns where NAs can be turned into 0sNAzero \leq c ("IND", "PRESCRIBED", "VISIT", "DAYS", "NUM
   " )
NAzeroCol <− unique (Reduce (c, sapply (NAzero, grep,
   colnames (COPDadm) ) ) )
```

```
\text{COPDadm} , \text{NAzeroCol} \leq \text{supply} (COPDadm[, \text{NAzeroCol}],
   function (x) if else (is . na(x), 0, x))
# independent of train / test breakdown
COPDadm <−
   transform( COPDadm,
                EJFR_IND=ifelse (EJFR_NUM > 0, 1, 0),
                FEMALE_IND=
                    \textbf{if} \, \textbf{else} \, (\textbf{GENDER\_CODE} \text{---} \textbf{``F"}, \, 1, 0),
                HOSP 365 DAYS COPD IND=
                    if else ( NUM_HOSP_365_DAYS_COPD > 0,1, 0),
                ER VISITS 365 DAYS COPD IND=
                    i felse (NM_ER_VISITS -365 DAYS_COPD >0, 1, 0)COPDadm | is . na (COPDadm$MARITAL_STATUS), "MARITAL_STATUS"
    ] <− "Unknown"
COPDadm [ is . na (COPDadm$RACE_ETHNICITY), "RACE_ETHNICITY"
   ] <− NS.CA.mode(COPDadm$RACE ETHNICITY)
f t pP t s \leq na. to. col Means (data . frame (f t p=COPDadm$FRAM
   TOTAL POINTS) )
COPDadm$FRAM TOTAL POINTS <− f t pP t s $FTP
# indicator columns
indCol \leq -\text{~green} ( "TOTAL", \text{~green} (" IND | PRESCRIBED | GT",
   names(COPDadm), value=T), invert=T, value=Tstatus Col \leq which (colnames (COPDadm) %in% outcomes
    \lceil \lceil 1 \rceil \rceil# set up models
# set. seed (1)testFrac \leftarrow 0.2tRows \leq createDataPartition (COPDadm[, statusCol], p=
   testFrac, list=F
```

```
# train on all training dataset patients, test on MGpatients only
mgRows \leftarrow which (COPDadm |, "MG_PCP_24M_SEEN_IND" | = 1
    \lambdatMgRows \leq tRows [tRows %in% mgRows]
nMgRows \leq length ( tMgRows )
COPDadm \leq COPDadm, ! names(COPDadm) %in% excludeCol
ds fTestRows <− tMgRows
threshold \leq 0.05
oma \leftarrow c(0, 0, 3, 0)
period \leq years (1)# set up test dates
fwdTestDates \leq forward.test.dates(keyDates, today,period)
backTestDates \leq backward.test.dates(keyDates, today,period)
midTestDates <− mid. test.dates (keyDates, today,
   period)
baseText <- paste ( "COPD_model_validation_for_dates_
   between", years [1], "and", years [length(years)])
testModel \leftarrow list(Full =list (Model=glm.test,ModelRowArg=dsfTestRows,
         TestRows=dsfTestRows,
         Text=
            paste ( baseText , " , \n t e s t =" ,
                    testFrac, "of\_total"," sensitivity \texttt{threshold}\mathcal{O} of \texttt{I}population", "flagged) =",
                    threshold),
# set up filter arguments
```

```
r c n t \leftarrow c (" _ MR", "WEIGHT")
rcntCol \leq unique (Reduce (c, sapply (rcnt, grep,
   colnames (COPDadm) ) ) )
minCor \leftarrow 0.6
sensThreshold < 0.01signLev \leftarrow 0.95
# run the test programscenario \leftarrow "Full"
testRows \leftarrow testModel[[scenario]][["TestRows"]]# use train set only
trainRows <− rownames( COPDadm[−testRows , ] )
# remove or b \, a \, c \, k \, fil \, l \, s \, p \, a \, r \, s \, e \, \, column \, spctNA \leq percent .NA. col( COPDadm[trainRows, rcntCol] )
# usable sparse columns
r a r e C o l \leq names ( pctNA [ pctNA \leq SPARSE_MIN] )
if ( length ( rareCol ) > 0 ) {
  rareData \leq -na. to . collMeans (COPDadm[, rareCol])\text{COPDadm} , rareCol \vert \lt rareData
}
# data too sparse to usesparseCoI \leq name( pretNA [petNA > SPARSE_MIN] )dataSet \leftarrow COPDadm[, ! colnames (COPDadm) %in%
   sparseCol]
# eliminate indicators with only one value
\{singleValCol \leftarrow which( \text{ sapply} ( dataSet [trainRows, ],function (c) length (unique(c)) \geq 1
```

```
dataSet \leftarrow dataSet[, -singleValCol]indCol \leq -indCol[indCol \%in\% \text{ columns}(\text{dataSet})]# indicator odds ratios
oRi <− odds.ratio.matrix(dataSet [trainRows, ], dataSet
    [trainRows, outcomes[[1]], indCol, level=signLevel
    \lambdarnORbase \leftarrow rownames( oRi )posCountMap \leftarrow rep(1, length(rnORbase))names( posCountMap ) <− rnORbase
posStat \leftarrow pos.start(dataSet[trainRows, ], names(posCountMap), outcomes \lceil \lceil 1 \rceil \rceil, posCountMap)
oddsRatioInd \leq merge( oRi, posStat, by="row.names",
    all x=T, rownames=T)
rownames(oddsRatioInd) < oddsRatioInd$RatioInd$Row.names
outputCol \leq c ("IndPosCount", "IndPosPct", "
    \label{eq:IndPosOutcomePct} \text{IndPosOutcomePct" , \ "Odds. Ratio" , \ "CI. Lower" , \ "CI.Upper", "Pr \ldots z \ldots", "Validity")
total \leq data. frame(lapply(outputCol, function(c) NA))
\text{columns}(\text{total}) \leftarrow \text{outputCol}total < -mutate ( total,
              Row.names="TOTAL",
              IndPosCount=nrow(dataSet[trainRows, ]),
              IndPosOutcomePct=
                  mrow( dataSet [trainRows, ]
                      [dataSet [trainRows, outcomes]
                          [1] ] ] = = 1 , ] /\textbf{now}(\text{dataSet}[\text{trainRows}, \cdot])oRind \leq rbind (oddsRatioInd [, c ("Row.names", outputCol
    ), total)
\text{colnames}(\text{ of hand}) [\text{colnames}(\text{ of } \text{Rind})] = \text{"Row} \text{ names"} \mid \text{ } < \text{ } \text{"}Variable"
write.csv (oRind, paste (interimDir, "OR_", timeStamp,
    " \cdot csv", sep=""), row .names=F)
```

```
ind Signif \leq na. omit (oRind [oRind $ V alidity = '*', "
   Variable"|)
# numeric odds ratio
nc \leq colnames (dataSet [, !colnames (dataSet) %in% c (
   indCol, "PATMRN.ID", outcomes [[1]])numCol \leq nc [sapply ( dataSet [, nc], is numeric ) ]
oddsRatioNum <−
   odds.ratio.num(dataSet [trainRows, ],dataSet [trainRows, outcomes [[1]]],numCol ,
                     lev e l=signLev )
# combined univariate ratio
uniOutCol <- c( "Row.names", "Odds.Ratio", "Pr...z..",
    "CI. Lower", "CI. Upper", "Validity")
oRn <− transform( oddsRatioNum , Row.names=rownames(
   oddsRatioNum ) )
# univariate ethnicity
ethnicitySummary <−
  multi.category.stats (dataSet [trainRows, ],
                          "RACE ETHNICITY" ,
                          outcomes \lceil 1 \rceil \rceil,
                          sensThreshold,
                          " Caucasian " ,
                          "Other " ,
                          c("0", "1"))
write.csv (ethnicitySummary, paste (interimDir, "
   Ethnicity \cdots, timeStamp, ".csv", sep=""), row.names
   =F )levels (dataSet$RACE_ETHNICITY) \leftarrow c(levels (dataSet$
   RACE ETHNICITY), "AfroEuroAsian")
dataSet [! dataSet $RACE_ETHNICITY \%in\% c("Asian","
   A frican _American", "Caucasian"), "RACE_ETHNICITY" |
```

```
<− "Other "
dataSet \lceil dataSet $RACE_ETHNICITY \%in\% c("Asian"," African
    \text{\large $\sqcup$}American", "Caucasian"), "RACE ETHNICITY" \vert <- "
    A froEuroAsian "
# marital status
\text{maritalStatus} \leftarrow \text{multi}.\text{category}.\text{stats}(\text{dataSet})trainRows, \vert, "MARITAL_STATUS", outcomes \vert \vert 1 \vert \vert,
   sensThreshold, "Married", "Unknown", c("1", "0")write \text{csv}(\text{maritalStatus}, \text{paste}(\text{interimDir}, \text{''})MaritalStatus \ldots", timeStamp, ".csv", sep=""), row.
   names = F)
levels (dataSet $MARTALSTATUS) \leftarrow c (levels (dataSetMARITAL_STATUS), "NotWidowed", "Other")
dataSet \lceil ! \right. dataSet $MARITAL_STATUS \%in\% c\left( "Married", "
   Widowed"), "MARITAL_STATUS" | <- "Other"
dataSet [dataSet$MARITAL_STATUS %in% c ("Married","Other
   "), "MARITAL_STATUS" \vert \leftarrow "NotWidowed"
eTs <− transform( subset ( ethnicitySummary , ! RACE
   ETHNICITY \%in\% c( "TOTAL", "Caucasian")),
Row.names=paste (RACE\_ETHNICITY, " : _Caucasian" ))
mSt <− transform (subset (maritalStatus, ! MARITAL
   STATUS %in% c( "TOTAL", "Married" ) ), Row.names=
    paste ( MARITAL_STATUS, ": _Married" ) )
uniOddRatio <- \texttt{rbind}(\texttt{oddsRatiolnd}[\,,\texttt{uniOutCol}]\,,\texttt{ oRn}[\,,uniOutCol], eTs[, uniOutCol], mSt[, uniOutCol])
\text{colnames}(\text{uniOddRatio}) [\text{colnames}(\text{uniOddRatio}) = "Row.names" | <− "Variable"
write \text{csv}(\text{uniOddRatio}, \text{ paste}(\text{interimDir}, \text{"UniOR"}),timeStamp, "csv", sep="), row.name = FcDs \leftarrow \text{columns}(dataSet)hiCorPriorNum <− high.corr ( dataSet [trainRows, sort (
   cDs[ which (:cDs\ %in% indCol )] ), minCor, "
    Numerical\_factor\_correlation\_matrix")
```

```
write.csv ( hiCorPriorNum, paste ( interimDir, "CorVar_
   Prior \lrcorner", timeStamp, ".csv", sep=""), row.names=F)
hiCorNumDf <− high .corr .df( hiCorPriorNum, minCor)
write.csv (hiCorNumDf, paste (interimDir, "CorVar_
   PriorTable_", timeStamp, ".csv", sep=""), row.
   names=F)
hiCorPriorInd \leq high.corr( dataSet [trainRows, sort(
   indCol) ], minCor, "Indicator_correlation_matrix",
   scaleArg=list (cex=0.75) )write . csv ( hiCorPriorInd, paste ( interimDir, "
   CorVarInd_ ", timeStamp, "csv", sep=''"), row .names
   =F )hiCorIndDf \leq high.corr.df (hiCorPriorInd, minCor)
write.csv (hiCorIndDf, paste (interimDir, "CorVar
   PriorIndTable \nightharpoonup", timeStamp, ".csv", sep=""), row.
   names=F)
indSignif <− indSignif [!indSignif %in% hiCorIndDf$var2
   \overline{1}\text{exclCol} \leftarrow c"MG PCP 18M SEEN IND"
    , "LOOPDIURETIC PRESCRIBED"
   , "NOT PRN MED TOTAL PRESCRIBED"
   , "DAYS SINCE LAST EF"
    "DISCHARGED_DISP_31_365_DAYS"
   "NUM_HOSP_31_365_DAYS_COPD"
    "NUM_ER_VISITS_31_365_DAYS_COPD"
   , "NUM HOSP 31 365 DAYS PNEU"
    "NUM_ER_VISITS_31_365_DAYS_PNEU"
    , "TOTAL LOS HOSP DAYS LST 12 MO"
   , "NUM HOSP 365 DAYS COPD"
    "NUM_ER_VISITS_365_DAYS_COPD"
    , "EJFR NUM"
)
incl Col \leftarrow c( c(
  "PAT AGE YRS" ,
  "CARDO<sub>-24</sub>MM<sub>L</sub>VISIT",
  "PULMO_24MM_VISIT",
  "HOSP_30D_/VISIT",
```

```
"NUM_HOSP_365_DAYS_COPD",
  "NUM_ER_VISITS_365_DAYS_COPD",
  "NUM_ER_VISITS_365_DAYS_PNEU",
  "HOSP-12MVISIT",
  "NUM UNIQUE SPECIALTIES" ,
  outcomes \lceil \lceil 1 \rceil \rceil,
  numCol, indCol
) )
factorCol \leq unique(\text{subset}( \text{in} clCol, \text{!} \text{in} clCol \%)exclCol ) )hiCor \leq high.corr ( dataSet [trainRows, sort ( factorCol
    )], minCor, "Factor_correlation_matrix", scaleArg=c( cex = 0.6 ) )
if ( Reduce (*', \dim(\text{hiCor}) > 0 ) {
  hiCorIndDf \leq high.corr.df (hiCor, minCor)
}
train \leftarrow dataSet[, factorCol]statusCol \leq which(colnames(train) %in% outcomes [[1]])
# test on the "odds ratio" training dataset
f_{\rm m} \leq -\frac{1}{2} glm("INP_OBS_COPD_ADM_365_DAYS_~_.", train [
   trainRows, \vert, family='binomial', maxit=100, trace=T)
trainGlm \leq auc. perf (fm, train [trainRows, ], train [
   trainRows, statusCol, type='response', text='Training\_set\_AUC')
# test on "odds ratio" test dataset selection
fullModel \leq glm. test ( train, statusCol, testRows,
   threshold, trace=T, maxit=100, text{textModel} [[
   s c e n a r i o ||[T"Text"], oma=c (0,0,3,0), v ar J oi n e r = '+'
    )
coefOut \leq odds. ratio.stat (fullModel$model,
   uniOddRatio, signLev)
write \text{csv}(\text{coeffOut}, \text{past}( \text{interimDir}, \text{"ORAll"}),timeStamp, "csv", sep=""), row.names=F)
\text{coeff} coef( summary \text{coeff} fullModel$model ) )
write . csv ( coefSummary [order ( rownames ( coefSummary )
```

```
), \vert, paste( resultDir, "Coef_All_", timeStamp, ".
   \text{csv}", \text{sep} = "") )
# generate performance statistics
prSort \leq perf.clsf.stat (fullModel$perf$predicted,
   nrow( COPDadmRaw), train[testRows, outcomes[[1]]]\left( \right)# plot the PPV / sensitivity graphg \leftarrow ppv \cdot sens \cdot plot(\; prSort\; ,\; main = baseText \; )print( g )ggsave (file = paste ("PPV\_Sens.", scenario, ".",
   timeStamp, " . pdf", sep=" " ), path=graphDir, plot=g,width=11, height=8.5, units="in")
# two. ord. plot( prSort, main=testModel/[sec nario ]/!/"Text" \vert )
allRisk \leq cbind (PAT_MRN_ID=dataSet [rownames(prSort),
   "PATMRN.ID", prSort)
write \text{csv}(\text{allRisk}, \text{past}( \text{resultDir}, \text{"AllRisk."},timeStamp, "csv", sep=""), row.names=F)
# do hospitalizations matter?
testNull \leftarrow dataSet[testRows, ]hospLastYr \leq which (testNull$NUM_HOSP_365_DAYS_-COPD >0<sub>0</sub>hospNextYr \leq which \left( testNull \left[ , \text{ outcomes} \right[1] \right] = 1 )
hospLastNextYr \leq \text{which} ( test Null [hospLastYr, outcomes
    [ [1] ] ] = 1numHospLastYr <− length ( hospLastYr )
numHospNextYr <− length ( hospNextYr )
numHospLastNextYr <− length ( hospLastNextYr )
\text{totalSize} \leq \text{mov}(\text{testNull})nullHyp <− mutate (
      data.frame(Total.Population.Size=nrow(testNull
         ) ,
```

```
Num. Total. Hosp. Last. Yr=numHospLastYr,
      Num. Hosp . Next . Yr=numHospNextYr ,
     Num. Hosp. Last. Next. Yr=numHospLastNextYr,
      Pct. Hosp. COPD. Last. Yr=numHospLastYr / totalSize,
      Pct. Hosp. COPD. Last. Next. Yr=numHospLastNextYr /
         numHospLastYr ,
      Pct. Flagged. Hosp. Total=numHospLastNextYr /
         length ( hospNextYr ) ) ,
      F1=2.0 / ( 1.0 / Pct. Hosp. COPD. Last. Next. Yr +
          1.0 / Pct. Flagged. Hosp. Total )write \text{csv}(\text{nullHyp}, \text{paste}(\text{interimDir}, \text{"NullHyp."})timeStamp, "csv", sep=""), row.names=F)
# lift table
p c t List \leq sort (c (0.01, 0.05, 0.1, 0.2, nullHyp$Pct.
   Hosp. COPD. Last. Yr, 0.3, 0.5, 1)liftTable \le -lift.title( prSort, petList, nrow(dataSet ) )
\text{mostRecent} \leq which ( COPDadmRaw$AS_OF_DATE = today )
liftTable < -transform( liftTable, Num. Flagged. Most.Recent=NS.CA. round (Pct. Total * length (mostRecent
   ) ) )
write \text{csv}(\text{liftTable}, \text{past}(\text{interimDir}, \text{"Lift}'timeStamp, "csv", sep=""), row.names=F)
# top 5 %liftThreshold < 0.05hiRisk <- head ( all Risk, lift Threshold * nrow ( prSort
   ) )
write \text{csv}(\text{hikisk}, \text{paste}(\text{resultDir}, \text{"Hikisk"}),timeStamp, "csv", sep=""), row.names=F)
# random 100 from top 5%
write \text{csv}(\text{hikisk}|\text{sample}(\text{1:now}( \text{hikisk}), \text{100}), \text{1},\textbf{paste} ( result Dir, "HiRiskRand100_", timeStamp,
   \text{csv"}, \text{sep} = " ), row .names=F)
```
Listing C.1: Example: R code for COPD logistic regression.

The most recent version of the code in Listing [C.1](#page-115-1) can be found in [COPDadm.R.](http://pulse:8000/DepartmentSites/can/Shared%20Documents/COPD%20Predictive%20Modeling/CODE/COPDadm.R)

Appendix D Sample code used to implement the Cox proportional hazard model in the heart failure mortality example

In the listing below, the formatting is different from that of the actual code due to a different line length in the typeset font. User-defined packages NS.CA.statUtils, NS.CA.dataUtils, NS.CA.dateUtils, NS.CA.modelUtils, NS.CA.plotUtils and NS.CA.mathUtils are defined in Appendix [E.](#page-137-0)

```
### D an iel Cher tok
### (C) 2014 NorthShore University HealthSystem
# \# H All rights reserved.
rm( l i s t = l s ( ) )\mathbf{library} (debug)
\mathbf{library} ( \mathbf{reshape2} )\| \{library}(date)
\mathbf{library} (stringr)
\mathbf{library} (\text{plyr})library (scales)
library (lubridate)
\mathbf{library}\left(\text{NS}. \text{CA}.\text{stat} \right)\mathbf{library}\left(\text{NS}. \text{CA}\right. \text{dataUtils}\right)\mathbf{library}\left(\text{NS}. \text{CA}. \text{ date} \text{Utils}\right)\mathbf{library}\left(\text{NS}. \text{CA}\ldotp\text{model} \text{U}\text{tils}\right)\mathbf{library}\left(\text{NS}. \text{CA.}\ \text{plot} \text{U}\text{tils}\right)\mathbf{library}\left(\text{NS}. \text{CA.} \text{math} \right)# main module
# set up constants
```

```
testFrac \leftarrow 0.2threshold \leq 0.05
oma \leftarrow c( 0, 0, 3, 0)
period \leq years (1)minCor < -0.6sensThreshold \leftarrow 0.01signLev \leq 0.95
years \leq 2010:2012today \leq - as . Date ("2013-01-01")
lastDate \leq -as Date("2012-01-01")dataDir \leq \text{``} \dots \text{'}Data\text{''}resultDir \leq \</sup>"../Results/"
graphDir \leftarrow paste(resultDir, "Graphs", sep="")interimDir \leftarrow paste (resultDir, "Interim/", sep="")
timeStamp \leftarrow timestamp. from . date ()
# read the input file\alphadmRaw \leq read.csv ( paste ( dataDir, "HF_EOL.csv", sep="
   "\,))
outcomes \leftarrow c ( "DEATH_365 DAYS")
\text{admRaw}, outcomes \leq as factor (\text{admRaw}, outcomes )
# all dates will be used later
keyDates <− sort ( unique ( as . Date ( admRaw$AS OF DATE )
     ) )
# for\ analysis, use\ data\ up\ to\ today\ onlyadmRaw <− transform( admRaw, AS OF DATE=as . Date ( AS OF
    \DeltaDATE ) )
adm \leftarrow subset ( admRaw, AS_OF_DATE \leftarrow lastDate )
# columns irrelevant to the analysis
\text{excludeCol} \leq \mathbf{c}(\text{ "PATID" })
```
 $# columns where NASA can be turne into 0s$ NAzero \leftarrow c ("IND", "PRESCRIBED", "VISIT", "DAYS", "NUM ") NAzeroCol <− unique (Reduce (c, sapply (NAzero, grep, colnames (adm))) NAzCol <− NAzeroCol | ! colnames (adm | , NAzeroCol |) %in % outcomes] adm [, NAzCol] \leftarrow sapply (adm [, NAzCol], function (x) $\mathbf{if} \, \mathbf{else} \, (\mathbf{is} \, \mathbf{.na}(\mathbf{x}), \, 0, \mathbf{x})$) $#$ independent of train / test breakdown ej fr Med \leq median (na . omit (admRaw\$EJFR_NUM)) adm \leq mutate (adm, EJFR_IND=ifelse (EJFR_NUM > 0, 1, 0), EJFR NUM=ifelse (EJFR NUM > 0 , EJFR NUM $,$ ej fr Med), $EJFR$ ₋DIF=abs ($EJFR$ -NUM – ejfrMed), $FEMALE_IND=ifelse (GENDER_CODE="F" , 1,$ 0)) α dm [is . na (α dm\$MARITAL_STATUS), "MARITAL_STATUS"] <- " Unknown" adm [is . na (adm\$RACE_ETHNICITY), "RACE_ETHNICITY" \vert <-NS.CA.mode(adm\$RACE ETHNICITY) $#$ indicator columns $indCol \leq-grep('TOTAL", grep('TOND].PRESCRIBED'.GT",$ $names($ adm $),$ value=T $),$ $invert=T, value=T)$ statusCol \leq which (colnames (adm) %in% outcomes) $# \; select \; random \; rows \; for \; survival$ $idCol \leq$ "PAT MRN_ID" patRows $\leq c$ (rand . surv (adm [adm\$AS_OF_DATE \lt lastDate ,] , idCol , s e e d=1) , rownames α adm α s β AS OF DATE = last Date $, |)$

```
adm \leq adm [patRows, ! colnames (adm ) %in% exclude Col]
\# set.seed (NULL) \# random sampling
\#  set . seed (  1  )  <br> #  reproducible  } results# testRows \leftarrow createDataPartition(adm), statusCol), p=t \, est \, Frac , \quad l \, is \, t = F)
# testRows \leftarrow which (adm$AS_OF\_DATE < as.Date()\ell2011−01−01' ) # test 2010−2011
testRows \leq which ( adm$AS_OF_DATE = lastDate ) #
    t \, e \, s \, t on MG 2012-01-01
\# testRows \leq which (adm$AS_OF_DATE == '2014-01-01') \#test on MG 2014-01-01
# set up filter arguments
r c n t \lt - c ( " _ MR", " _ 06 MO", " _ 12 MO", " _ 24 MO", " _
   -36 \text{ MO}", "-48 \text{ MO}")
rcntCol \leq unique (Reduce (c, sapply (rcnt, grep,
   colnames (adm ) ) )
# use train set only
trainRows <− rownames( adm[−testRows , ] )
# remove or backfill sparse columns
dataSet \leq rem.\,sparse.\,col(\,adm,\,trainRows,\,rentCol\,,\,0.2)
# convert outcomes to numeric
dataSet [, outcomes] \leqas numeric (levels (dataSet ], outcomes ]) \int [dataSet[, outcomes] ]
# eliminate indicators with only one value
dataTrain \leq rem.\,single.\,val.\,col(dataSet[trainRows,)
dataTrainCol \leq \text{colnames}(\text{dataTrain})131 ©2016 NorthShore University HealthSystem
```

```
dataSet \leftarrow dataSet[, dataTrainCol]indCol \leq -indCol[indCol \%in\% dataTrainCol]# univariate ethnicity
ethnicitySummary <−
  multi.category.stats (dataTrain, "RACE_ETHNICITY",
      outcomes, sensThreshold,
                            " Caucasian", "Other", c("0", "1" ))
write \text{csv}(\text{ethnicitySummary}, \text{paste}(\text{interimDir}, \text{"}Ethnicity \ldots", timeStamp,
                                         " \cdot csv", sep=""),
                                             row . names=F)
# this comes in after the initial analysislevels (dataSet$RACE_ETHNICITY) \leftarrow c(levels (dataSet$
   RACE_ETHNICITY),
                                          " A froEuroAsian " )
dataSet \lceil! dataSet $RACE_ETHNICITY \%in\%c(" Asian", " African \dots American", "Caucasian"),
               "RACE ETHNICITY" ] <−
  "Other "
dataSet [dataSet$RACE_ETHNICITY %in%
           c(" Asian", " African \Box American", "Caucasian"),
               "RACE ETHNICITY" ] <−
  " A froEuroAsian "
# marital status
\text{m }arital\text{Status} <-
  multi.category.stats (dataTrain, "MARITAL_STATUS",
      outcomes, sensThreshold,
                            "Married", "Unknown", c( "1",
                                "0"))
write . csv ( marital Status, paste ( interimDir, "
   MaritalStatus _", timeStamp,
                                       " \cdot csv", sep="" ),
```
 $row \cdot names = F$) $levels (dataSet $MARTALSTATUS) \leftarrow c(levels (dataSet$ MARITAL STATUS) , "NotWidowed" , " Other") dataSet $\lceil ! \right.$ dataSet \$MARITAL_STATUS $\%$ in $\%$ c("Married"," Widowed"), "MARITAL STATUS"] <− "Other " dataSet [dataSet\$MARITAL_STATUS %in% c("Married"," Other" $)$, "MARITAL_STATUS" | <- "NotWidowed" eTs <− transform(subset (ethnicitySummary , ! RACE_ETHNICITY $\%$ in $\%$ c(" TOTAL", "Caucasian")), Variable=paste (RACE_ETHNICITY, ":.. $Caucasian'$)) $mSt < -$ transform (subset (marital Status, ! MARITAL_STATUS $\%$ in $\%$ c(" TOTAL", "Married" $)$), $Variable = paste(MARTALSTATUS, " : ...$ $Married"$)) uniOddsRatio \leq odds. ratio save (dataTrain, outcomes, indCol , idCol , $addList=list (eTs,$ mSt) , oRdir= $intervalir)$ outCol \leq which (colnames (dataTrain) %in% outcomes) hiCorTab \leq output . corr (dataTrain, indCol, dir= $interimDir,$ timeStamp=timeStamp) $indSignif \leq -na.$ omit $($ uniOddsRatio [uniOddsRatio\$ Validity $=$ '*', "Variable" |) $indSignif \leq -indSignif[!indSignif \%in\% as.character()$ hiCorTab\$var2)] $#$ manual adjustments to predictive variables 133 ©2016 NorthShore University HealthSystem

"ACE_INHIBITOR_PRESCRIBED" , "SPIRON PRESCRIBED" , "NUM HOSP 365 DAYS ICU" , "LOOPDIURETIC PRESCRIBED" " ASPIRIN PRESCRIBED" "CARDO_12MM_VISIT" , "INP_OBS_HF_365_DAYS" $# two look$ ahead variables, can't use "INP_OBS_HF_ADM_365_DAYS" "ANTICOAG_PRESCRIBED" $\#$ latest $iteration$ testing on 2012 , "FEMALE IND" "MI_IND" , "PL DEPR IND" , "METOLAZONE PRESCRIBED" , "THIAZIDEDIUR PRESCRIBED" $"{\sf TRIGL_MR}"$ "NUM_HOSP_30_DAYS" $\#$, "NUM_HOSP_365_DAYS" , "COPD IND" "NUM_MISSED_APPTS_3_YRS" $"HDL$ $MR"$) $\text{inclCol} \leq \mathbf{c}$ (outcomes [[1]] , ind Signif [ind Signif %in% colnames ($dataSet$)] , "BETA BLOCKER PRESCRIBED" , "CSO_EVER" $\#$ latest iteration $t \, e \, s \, t \, i \, n \, g \quad on \quad 2012$ $\#$, "CARDO_24MM_VISIT" , " $SBP_MR"$) baseText < paste("HF_EOL_model_validation_for_dates_ between", $\text{years} [1]$, "and", $years [length(years)]$ t est Text \leftarrow paste (base Text , ", _\n_t est _=", t est Frac, " of _ total",

```
" sensitivity \texttt{threshold}(\% \texttt{of} \Boxpopulation", "flagged)=",
                      threshold )
prSort < - run.glm.model(dataSet, trainRows, testRows,
    in cl Col, excl Col,
                            outcomes , uniOddsRatio ,
                                length ( patRows ),
                            testText = testText, oRdir =interimDir,
                            coefDir = resultDir, varJoin ='+', timeStamp=timeStamp)
# plot the PPV / sensitivity graphscenario <- "Full"
allRisk < - ppv. sens. risk (dataSet, prSort, scenario,
   baseText ,
                             graphDir = graphDir, resultDir=r e sult Dir,
                             timeStamp=timeStamp )
# lift table, top 5% and random 100 from top 5%
lift. table.save( prSort, nrow( dataSet), admRaw$AS_OFDATE,
                   max( admRaw$AS_OF_DATE), allRisk,
                   c( 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1
                       ) ,
                   resultDir=resultDir, timeStamp=
                       timeStamp )
# Cox proportional hazard model
prSortCox \leq run.cox \text{.} \text{model}(dataTrain, dataSet)testRows , \, \, \, | \, , \, \, today \, , \, \, \, \text{inclCol} \, ,exclCol, outcomes, coefDir
                                   =resultDir,
                                timeStamp=timeStamp )
```

```
baseTextCox \leq packet('"HF_EOL_Cox \_survival \_modelvalidation \text{\_}for \text{\_}dates \text{\_}between",years [1], "and", years [length(\left[\mathrm{years}\right)\right])
allRiskCox \leq-ppv.sens.risk(dataSet, prSortCox,s cenario, baseTextCox,
                                 graphDir=graphDir ,
                                     resultDir = resultDir,ppvFile="PPV_Sens_Cox",
                                     r is k File=" AllRisk _Cox _
                                    " ,
                                 timeStamp=timeStamp )
# lift table, top 5% and random 100 from top 5%
lift.table.save(prSortCox, nrow(dataSet), admRaw$AS
   OF DATE,
                   max( admRaw$AS_OF_DATE), allRiskCox,
                   c( 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1
                       ) ,
                   resultDir = resultDir, liftFile = "LiftCox_",
                   riskFile=" High Risk \_Cox", topRiskFile="HiRiskRand_Cox_",
                   timeStamp=timeStamp )
```
Listing D.1: Example: R code for Cox proportional hazard modeling.

The most recent version of the code in Listing [D.1](#page-127-1) can be found in [HF](http://pulse:8000/DepartmentSites/can/Shared%20Documents/HF_EOL/CODE/HF_EOL.R) - [EOL.R.](http://pulse:8000/DepartmentSites/can/Shared%20Documents/HF_EOL/CODE/HF_EOL.R)

Appendix E R package manuals

- E.1 Package [NS.CA.dataUtils](http://pulse:8000/DepartmentSites/can/Shared%20Documents/Forms/AllItems.aspx?RootFolder=/DepartmentSites/can/Shared%20Documents/Code%20Library/R) data manipulation
- E.2 Package [NS.CA.dateUtils](http://pulse:8000/DepartmentSites/can/Shared%20Documents/Forms/AllItems.aspx?RootFolder=/DepartmentSites/can/Shared%20Documents/Code%20Library/R) date arithmetic
- E.3 Package [NS.CA.mathUtils](http://pulse:8000/DepartmentSites/can/Shared%20Documents/Forms/AllItems.aspx?RootFolder=/DepartmentSites/can/Shared%20Documents/Code%20Library/R) math functions (re)defined
- E.4 Package [NS.CA.modelUtils](http://pulse:8000/DepartmentSites/can/Shared%20Documents/Forms/AllItems.aspx?RootFolder=/DepartmentSites/can/Shared%20Documents/Code%20Library/R) model performance descriptors and graphics
- E.5 Package [NS.CA.plotUtils](http://pulse:8000/DepartmentSites/can/Shared%20Documents/Forms/AllItems.aspx?RootFolder=/DepartmentSites/can/Shared%20Documents/Code%20Library/R) plotting utilities
- E.6 Package [NS.CA.statUtils](http://pulse:8000/DepartmentSites/can/Shared%20Documents/Forms/AllItems.aspx?RootFolder=/DepartmentSites/can/Shared%20Documents/Code%20Library/R) statistical functions

Package 'NS.CA.dataUtils'

April 12, 2016

Type Package

Title Manipulate, backfill and transform data

Version 3.0

Date 2015-01-28

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description Contains functions for backfilling, transforming and manipulating data for the purposes of predictive analytics.

Depends R ($>= 3.0.3$)

Imports stringr, dplyr, zoo, NS.CA.statUtils

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

Index 12

apply.na.omit *Apply a function to all values that are not empty, NAs for empty values*

Description

Apply a function to all values that are not empty, NAs for empty values

Usage

apply.na.omit(x, $i, fn, ...$)

Arguments

Value

A list of resulting function applications

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

bind.with.field *Add a field to non-null elements of a data frame*

Description

Add a field to non-null elements of a data frame

Usage

bind.with.field(x, field, c)

Arguments

Value

The original data frame with the field added

case.sentence 3

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

case.sentence *String to sentence case (first capital) or from sentence case to lower case*

Description

String to sentence case (first capital) or from sentence case to lower case

Usage

```
case. sentence(x, inverse = T)
```
Arguments

Value

original string in sentence or lower case

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

df.to.zoo *Convert a data frame to zoo*

Description

Convert a data frame to zoo

Usage

```
df.to.zoo(x, indCol = c("date", "hour"), format = "xF "HH", tz = "UTC")
```
Arguments

4 group.by.col

Value

zoo object generated from x

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

factor.to.numeric *Convert factor data to numeric*

Description

Convert factor data to numeric

Usage

factor.to.numeric(x)

Arguments

x factor data

Value

original factor data converted to numeric

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

group.by.col *Group data frame by columns using* group_by

Description

Group data frame by columns using group_by

Usage

group.by.col(x, groupCol)

Arguments

list.invert 5

Value

original data frame grouped by columns

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

list.invert *Swaps names and values in an isomorphic list*

Description

In an isomorphic (1:1, or bijection) list, inverts the relationship turning names into values and values into names

Usage

list.invert(l)

Arguments

l named list

Value

original list indexed by values with values set to original names

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

list.search *Find entries in a list*

Description

Finds names of element(s) of a named list element by value

Usage

list.search(l, c)

Arguments

6 map.invert

Value

names of element(s) of l whose values are equal to c

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Description

Finds the value in a hash table (map) given by a mapping function corresponding to the given key

Usage

map.direct(key, map, ...)

Arguments

Value

value in the map corresponding to the supplied key

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

map.invert *Key(s) from a map by value*

Description

Given a mapping (hash) function, finds keys corresponding to a given value by calling list. invert)

Usage

map.invert(value, mapFn, ...)
na.to.col.mode 7

Arguments

Value

name(s) in the map corresponding to the supplied value

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

na.to.col.mode *Replace NA's with column modes*

Description

Replace NA's with column modes

Usage

na.to.col.mode(x)

Arguments

x matrix or data frame containing sparse data; convert x to matrix if it isn't

Value

The original matrix or data frame with NA's filled

na.to.col.mode.2 *Replace NA's with column modes (corrected* na.to.col.mode *)*

Description

Replace NA's with column modes (corrected na.to.col.mode)

Usage

```
na.to.co1.mode.2(x, fn = function(c) max(c, na.rm = T), ...)
```
Arguments

Value

The original matrix or data frame with NA's filled

na.to.colMeans *Replace NA's with column means*

Description

Replace NA's with column means

Usage

na.to.colMeans(x)

Arguments

x matrix or data frame containing sparse data; convert x to matrix if it isn't

Value

The original matrix or data frame with NA's filled

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

na.to.most.recent *Replace NA's with the most recent data from prior months*

Description

Replace NA's with the most recent data from prior months

Usage

```
na.to.most.recent(x, valid, timeStr, mrStr = ". . . MR", funMR = function(y) {y })
```
Arguments

na.to.row.mode 9

Value

The original matrix or data frame with "most recent" columns added

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

na.to.row.mode *Replace NA's with row modes*

Description

Replace NA's with row modes

Usage

na.to.row.mode(x)

Arguments

x matrix or data frame containing sparse data; convert x to matrix if it isn't

Value

The original matrix or data frame with NA's filled

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

na.to.rowMeans *Replace NA's with row means*

Description

Replace NA's with row means

Usage

```
na.to.rowMeans(x)
```
Arguments

x matrix or data frame containing sparse data; convert x to matrix if it isn't

Value

The original matrix or data frame with NA's filled

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.dataUtils *NS.CA.dataUtils.*

Description

Data manipulation, transformation and imputation

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

pattern.to.str *Replace a pattern with a string*

Description

Replace a pattern with a string

Usage

pattern.to.str(x, pattern, str)

Arguments

Value

The original with pattern changed to str

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

remove.col.by.name 11

remove.col.by.name *Remove column(s) by name or number or matrix*

Description

Remove column(s) by name or number or matrix

Usage

remove.col.by.name(lx, field, isStr)

Arguments

Value

original (list of) data frame(s) with the field(s) removed

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

apply.na.omit, 2

bind.with.field, 2

case.sentence, 3

df.to.zoo, 3

factor.to.numeric, 4

group.by.col, 4 group_by, *4*

list.invert, 5, *6* list.search, 5

map.direct, 6 map.invert, 6

na.to.col.mode, *7*, 7 na.to.col.mode.2, 7 na.to.colMeans, 8 na.to.most.recent, 8 na.to.row.mode, 9 na.to.rowMeans, 9 NS.CA.dataUtils, 10 NS.CA.dataUtils-package *(*NS.CA.dataUtils*)*, 10

pattern.to.str, 10

remove.col.by.name, 11

Package 'NS.CA.dateUtils'

April 12, 2016

Type Package

Title Date manipulation and arithmetic

Version 5.0

Date 2015-01-28

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description

Contains functions for manipulating and analyzing dates for the purposes of predictive analytics.

Depends $R (= 3.0.3)$

Imports timeDate, lubridate, NS.CA.dataUtils

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

2 date.hr.seq

\blacksquare Index \blacksquare

date.hr.seq *Date and hour time marks*

Description

Generates an ordered sequence of dates and corresponding time marks

Usage

```
date.hr.seq(dateFrom, dateTo, seqFn = hours24, colNames = c("date", "hour"),
  ...)
```
Arguments

Value

Returns a data frame with dates as the first column and subday time marks as subsequent columns ordered right to left (e.g., by hour, then by date)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

date.ind 3

Description

Appends the following columns to a data frame containing a date:

Usage

date.ind(x, col)

Arguments

Value

Returns the original data frame with date element columns appended

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

date.to.POSIXct *convert* Date *to* POSIXct

Description

```
convert Date to POSIXct
```
Usage

```
date.to.POSIXct(d, format = "%F", tz = "UTC")
```
Arguments

Value

Returns a POSIXct object

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

days.in.year.Date *Calculate the # of days in a given year forward or backward*

Description

Calculate the # of days in a given year forward or backward

Usage

```
days.in.year.Date(dt, direction = 1)
```
Arguments

Value

(integer) # of days in the year

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

dec.to.hr.str 5

dec.to.hr.str *Decimal timestamp to a string containing hours, minutes and seconds*

Description

Converts a decimal date in the form YYYYMMDD.hhmmss to a string in the form of "hh hr(s) mm min ss sec"

Usage

dec.to.hr.str(x)

Arguments

x timestamp in decimal form

Value

Returns a string in the form of "hh hr(s) mm min ss sec"

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

dow.map *Day-of-the week map*

Description

Generates a map of days of the week to their three-letter names

Usage

dow.map()

Value

Returns a map in the form of "3-letter day name" -> day # starting at Sun=0

Description

Earliest date by row from data frame columns

Usage

```
first.date(x, cutoff = Sys.Date() - as.difftime(6240, units = "weeks"))
```
Arguments

Value

Returns a list of earliest dates in each row

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

first.valid.date *First non-na date by row from data frame columns*

Description

First non-na date by row from data frame columns

Usage

```
first.valid.date(x, dateNow = as.Date("1970-01-01"), op = \le \le \le, fn = min)
```
Arguments

Value

Returns a list of earliest valid dates in each row

hours **that the contract of th**

Description

Difference between two timestamps in hours

Usage

hours(t1, t2)

Arguments

Value

Returns the difference between t1 and t2 in hours

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

hours24 *Hours of the day*

Description

Hours of the day

Usage

hours24()

Value

Returns whole numbers from 0 to 23

Description

Intelligently add to time mark

Usage

mark.add(m, dm, mSet = mark.hr())

Arguments

Value

Returns a time mark =24*wday(d) + hour(d); $0 \le$ mark \le 167

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

mark.from.date *Convert a date to hourly time mark (by calling* mark.from.date.hr*)*

Description

Convert a date to hourly time mark (by calling mark.from.date.hr)

Usage

mark.from.date(d)

Arguments

d date

Value

Returns a time mark =24*wday(d) + hour(d); $0 \le$ mark \le 167

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

mark.from.date.hr 9

mark.from.date.hr *Convert date and hour to hourly time mark (by calling* mark.from.day.hr*)*

Description

Convert date and hour to hourly time mark (by calling mark.from.day.hr)

Usage

mark.from.date.hr(d, h)

Arguments

Value

Returns a time mark =24 \star (wday(d) - 1) + h; 0 <= mark <= 167

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

mark.from.day.hr *Convert numeric weekday and hour to hourly time mark*

Description

Convert numeric weekday and hour to hourly time mark

Usage

```
mark.from.day.hr(d, h)
```
Arguments

Value

Returns a time mark = $24*d + h$; $0 \leq \text{mark} \leq 167$

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

mark.hr *Hourly time marks*

Description

Generates a sequence of integer time marks corresponding to hours of the day by day of the week

Usage

mark.hr(dow = $0:6$, hr = $0:23$)

Arguments

Value

Returns a list of nonnegative whole numbers signifying consecutive hour marks for the given hours of given days of the week (defaults to 0:23)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.dateUtils *NS.CA.dateUtils.*

Description

Date manipulation and date arithmetic

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

random.date 11

Description

Generate random dates within a given range

Usage

random.date(dateFrom, dateTo, startFrac = 0 , n = 1)

Arguments

Value

Returns n random dates between dateFrom + (dateTo - dateFrom) * startFrac and dateTo

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

season.calendar.map *Month-to-season map*

Description

Generates a map of months to the names of calendar seasons

Usage

season.calendar.map()

Value

Returns a map in the form of "season name" -> vector of month #'s

season.from.month *Season from month*

Description

Season from month

Usage

season.from.month(month)

Arguments

month month(s) of the year (can be a list)

Value

Returns a list of seasons corresponding to month(s)

season.subset *Get entries from the given season*

Description

Given the name of a season, get the rows of a data that belong to this season

Usage

```
season.subset(x, season, field = "month", seasonMap = season.calendar.map)
```
Arguments

Value

Returns the data frame containing only the rows from season

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

timestamp.from.date 13

timestamp.from.date *Date to timestamp*

Description

Converts a date to timestamp in the form of [yyyy][sep][mm][sep][dd]

Usage

timestamp.from.date(d = Sys.Date(), sep = $"$ _")

Arguments

Value

Returns a timestamp string in the form of [yyyy][sep][mm][sep][dd]

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

weekdays *One-letter weekday names*

Description

Generates a sequence of one-letter weekday names ("U" - "S") or a one-letter name corresponding to the $#$ of a day of the week $(0 - 6)$

Usage

weekdays(x)

Arguments

x (optional) # of a day of the week

Value

Returns:

```
if no x is supplied,
                 "U", "M", "T", "W", "R", "F", "S"
if x is supplied,
```
one-letter name of the x-th day of the week

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

year.frac.Date *Calculate time interval between two dates as a fraction of the year*

Description

Calculate time interval between two dates as a fraction of the year

Usage

S3 method for class 'frac.Date' year(dt1, dt2)

Arguments

Value

(numeric) fraction of the year

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

yy.to.yyyy *2-digit year to 4-digit year*

Description

2-digit year to 4-digit year

Usage

 $yy.to.yyyy(x, cutoff = 50)$

Arguments

yy.to.yyyy 15

Value

Returns dates with 2-digit years converted to 4-digit years: years below cutoff are converted to the current century, otherwise go to previous century

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

date.hr.seq, 2 date.ind, 3 date.to.POSIXct, 3 days.in.year.Date, 4 dec.to.hr.str, 5 dow.map, 5 first.date, 6 first.valid.date, 6 hours, 7 hours.24, *2* hours24, 7 mark.add, 8 mark.from.date, 8 mark.from.date.hr, *8*, 9 mark.from.day.hr, *9*, 9 mark.hr, 10 mark.hr(), *8* NS.CA.dateUtils, 10 NS.CA.dateUtils-package *(*NS.CA.dateUtils*)*, 10 random.date, 11 season.calendar.map, 11, *12* season.from.month, 12 season.subset, 12 timestamp.from.date, 13

weekdays, 13

year.frac.Date, 14 yy.to.yyyy, 14

Package 'NS.CA.mathUtils'

April 12, 2016

Type Package

Title Math extension functions

Version 2.0

Date 2014-07-09

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description Math extension functions.

Depends R ($>= 3.0.3$)

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

minmax.step *Min to max sequence from a vector*

Description

From a numeric vector generates a sequence from min to max with a given step

Usage

 $minmax.setep(x, step = 1)$

Arguments

1

Value

returns a sequence of numbers from $min(x)$ to $max(x)$ spaced at step

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.mathUtils *NS.CA.mathUtils.*

Description

Auxiliary and mathematical functions redefined from base (e.g., NS.CA.mathUtils:round provides standard mathematical, not IEEE, rounding)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.round *Mathematically correct rounding*

Description

Rounds numbers down when the lat digit is less than 5, up otherwise

Usage

NS.CA.round(x)

Arguments

x real number

Value

Returns (integer) ceiling(x) if x ends in 0.5 or greater; floor(x) otherwise

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

minmax.step, 1

NS.CA.mathUtils, 2 NS.CA.mathUtils-package *(*NS.CA.mathUtils*)*, 2 NS.CA.round, 2

Package 'NS.CA.modelUtils'

April 12, 2016

Title predictive modeling and statistical analysis utilities

Version 8.0

Date 2014-12-10

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description This is a collection of functions for setting up tests, analyzing survival times, calculating the odd ratio matrix with statistics and analyzing model performance.

Depends R ($>= 3.0.3$)

Imports ROCR, lubridate, plyr, ggplot2, survival, NS.CA.dataUtils, NS.CA.mathUtils, NS.CA.statUtils, NS.CA.dateUtils, NS.CA.plotUtils

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

1

2 auc.perf

Index 22

auc.perf *Model performance evaluation*

Description

Plots AUC, Matthews correlation coefficient and F1 score auc.perf.base)

Usage

auc.perf(model, test, status, type, ...)

Arguments

Value

Returns a list of model outputs:

auc.perf.base 3

auc.perf.base *Model performance evaluation*

Description

Plots AUC, Matthews correlation coefficient and F1 score

Usage

```
auc.perf.base(prediction, status, digits = PERF.DIGITS, text = "",
 mfrow = AUC.MFROW, oma = AUC.OMA, plotFile = NA, width = 11,
 height = 8.5)
```
Arguments

Value

Returns a list of model outputs:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

backward.test.dates *Set up backward test program*

Description

Break up dates into training and testing datasets allowing for at least one observed period after the training date

Usage

```
backward.test.dates(dates, dateNow = Sys.Date(), period = AUC.PERIOD)
```
Arguments

Value

Returns a list of vectors of dates:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

charge.save *Charges for predicted hospitalizations*

Description

Compute and save charges for specific and general hospitalizations

Usage

```
charge.save(risk, x, chargeCol, idCol = ID.COL, predCol = PRED.COL,
 actCol = ACT.COL, chargeDir = ".", chargeFile = "Chrg.",
 timeStamp = TIMESTAMP)
```
forward.test.dates 5

Arguments

Value

Returns a data frame of mean charges per row of x (patient) with chargeCol columns

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

forward.test.dates *Set up forward test program*

Description

Break up dates into training and testing datasets allowing for at least one observed period after the last test date

Usage

```
forward.test.dates(dates, dateNow = Sys.Date(), period = AUC.PERIOD)
```
Arguments

6 glm.test

Value

Returns a list of vectors of dates:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

glm.test *glm (classification) model fit assessment*

Description

Runs glm (classification) model fit assessments on a dataset

Usage

```
glm.test(dataSet, statusCol, testRows, threshold = AUC.THRESHOLD,
 family = "binomial", type = "response", trace = F, maxit = 25,
 varJoiner = "+", corrMat = F, ...)
```
Arguments

Value

Returns a list of vectors of dates:

glm.validate.time 7

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

glm.validate.time *Validate glm (classification) model*

Description

Validates glm (classification) model according to the rules provided by a parameter function

Usage

```
glm.validate.time(dataSet, statusCol, testDates, threshold = AUC.THRESHOLD,
 dateField = "AS_OF_DATE", period = AUC.PERIOD, corrMat = F, ...)
```
Arguments

Value

Returns a list of vectors of dates:

model glm model

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

```
lift.table Lift table
```
Description

Tabulates PPV and sensitivity at specified points by percentage using linear approximation

Usage

```
lift.table(x, pctList, totalSize, pctCol = "Percent.Flagged",
  actPosCol = "Number.Actual", actCol = "Actual", ppvCol = "PPV",
 sensCol = "Sensitivity")
```
Arguments

Value

Returns a data frame of lift statistics:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

lift.table.save *Lift table and risk rankings for all and high-risk patients*

Description

Compute and save the lift table using lift.table) and save the risk matrices for all and topRiskNum high-risk patients

Usage

```
lift.table.save(prSort, nRec, dates, today, allRisk, steps = c(0.01, 0.05,
  0.1, 0.2, 0.3, 0.5, 1), nullHypStep = NA, resultDir = "./",
 liftFile = "Lift_", liftThreshold = 0.05, riskFile = "HiRisk_",
  topRiskNum = 100, topRiskFile = "HiRiskRand_", timeStamp = TIMESTAMP)
```
Arguments

Value

No return parameter

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

mid.test.dates *Set up backward test program*

Description

Break up dates into training and testing datasets allowing for at least one observed period after the training date

Usage

mid.test.dates(dates, dateNow = Sys.Date(), period = AUC.PERIOD)

Arguments

Value

Returns a list of vectors of dates:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

model.comp *Compare two models by performance and charges*

Description

Compare performance of two models, compute and save respective patients' charges

Usage

```
model.comp(altPred, x, outCol, outInd, chargeCol, idCol = ID.COL,
  predCol = PRED.COL, nRows = 1000, aucText = "Original model",
  chargeDir = ".", chargeFile = "ChrgOM_", perfFile = "PerfOM_",
 timeStamp = TIMESTAMP, ...)
```
NS.CA.modelUtils 11

Arguments

Value

Returns a data frame of mean charges per row of x (patient) with the following columns

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.modelUtils *NS.CA.modelUtils.*

Description

Model performance statistics, test programming and graphing
Arguments

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.save *Combined indicator and numerical odds ratio*

Description

Compute and save indicator and numerical odds ratios using odds.ratio.summary) and odds.ratio.num)

Usage

```
odds.ratio.save(x, statCol, indCol, idCol = ID.COL, addList = NA,
oRdir = ".", indORfile = "ORind_", uniORfile = "ORuni_",
 sigLev = SIG.LEV, timeStamp = TIMESTAMP, ...)
```
Arguments

output.corr and the contract of the contract o

Value

Returns a data frame of univariate odds ratios:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Description

Compute correlation matrices for indicator and numerical variables by calling high.corr) and high.corr.df) and save high correlation matrices to .csv files as data frames and tables

Usage

```
output.corr(x, indCol, minCor = CORR.MIN, dir = "./",
 corNumFile = "CorNum_Prior_", corNumTabFile = "CorNum_PriorTable_",
 corIndFile = "CorInd_Prior_", corIndTabFile = "CorInd_PriorTable_",
corrPlotDir = "./", plotNumFile = "Corr_Num_",
plotIndFile = "Corr\_Ind", timeStamp = TIMESTAMP, ...)
```
Arguments

Value

Returns a data frame of highly correlated pairs of variables, including their correlations:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

perf.clsf.stat *Performance statistics for a classification model*

Description

Provides validation statistics for a classification model based on predicted (and, if availabel, actual) outcomes

Usage

```
perf.clsf.stat(predicted, totalSize = nrow(predicted), actual = NULL)
```
Arguments

Value

Returns a data frame of model performance metrics sorted by predicted values in descending order with columns:

Regardless of whether outcomes in actual were supplied

Predicted predicted values Number.Flagged # of entries flagged in the testing data set as having positive outcomes Number.In.Whole # of entries flagged in the whole data set (training + testing) as having positive outcomes

ONLY if outcomes in actual were supplied

ppv.sens.risk 15

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

ppv.sens.risk *Plot and save the PPV / sensitivity graph and the risk matrix*

Description

Plot and save the standard PPV / sensitivity graph ppv.sens.plot) and save the risk matrix

Usage

```
ppv.sens.risk(x, prSort, scenario, ppvSensText, idCol = ID.COL,
graphDir = "./", resultDir = "./", ppvFile = "PPV_Sens."riskFile = "AllRisk_", timeStamp = TIMESTAMP)
```
Arguments

Value

Returns a data frame of risk statistics with row names corresponding to patient data entries in x (see perf.clsf.stat).

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Description

Select one row of data for those patients in the mortality model who remained alive for at least two dates during the observation period. If patient has only one row, it is returned, otherwise one is selected at random from all patient's data.

Usage

rand.surv(x, field = $ID.COL$, seed = $NULL$)

Arguments

Value

Returns a vector of row numbers

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

rem.single.val.col *Remove single-valued columns from a data matrix*

Description

Remove single-valued (indicator) columns from a data frame

Usage

rem.single.val.col(x)

Arguments

x event data frame

Value

Returns x without single-valued columns

rem.sparse.col 17

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

rem.sparse.col *Remove sparse columns from a data matrix*

Description

Remove from a data frame those columns where more than SPARSE.MIN) of the data is absent

Usage

rem.sparse.col(x, trainRows, col, sparseMin = SPARSE.MIN)

Arguments

Value

Returns x without sparse rows

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

run.cox.model *Run the* coxph *(Cox) model and compute its performance metrics*

Description

Run the Cox model and compute its performance metrics by calling auc.perf) and perf.clsf.stat)

Usage

```
run.cox.model(train, test, today, inclCol, exclCol, statCol,
dbateCol = "DEATH_DATE", abateCol = "AS_OF_DATE", varJoiner = "+",maxIter = COX.ITER.MAX, coefDir = ".", coefFile = "Coef_All_Cox_",
plotDir = ".", plotFile = "Cox_AUC",text = "Cox survival model analysis", timeStamp = TIMESTAMP, ...)
```
Arguments

Value

Returns a data frame of risk statistics with row names corresponding to patient data entries in x (see perf.clsf.stat).

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

run.glm.model *Run the* glm *model, compute correlation matrices and tables*

Description

Run the model, compute correlation matrices for indicator and numerical variables by calling high.corr) and high.corr.df), save high correlation matrices to .csv files as data frames and tables, save model coefficients as a table and compute and plot performance statistics using perf.clsf.stat)

Usage

```
run.glm.model(x, trainRows, testRows, inclCol, exclCol, statCol, uniOddsRatio,
numRec, varJoiner = "+", minCor = CORR.MIN, scaleArg = c(cex = 0.6),
 threshold = 0.05, maxit = 100, sigLev = SIG.LEV, trace = T,
 trainText = "Training set AUC", testText = "Testing set AUC",
 oRdir = "./", oRfile = "OR_All_", coefDir = ".'',coeffile = "Coeff\_All", corrPlotDir = ".,"trainAUCplotFile = "AUC_Train_", testAUCplotFile = "AUC_Test_",
corrPlotFile = "Corr_Mat_All_", timeStamp = TIMESTAMP, ...)
```
run.glm.model 19

Arguments

Value

Returns a data frame of risk statistics with row names corresponding to patient data entries in x (see perf.clsf.stat).

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

surv.diff *Survival time*

Description

Compute survival time as the number of days from the start of the observation interval to the minimum of outcome date and interval end

Usage

surv.diff(asOfDate, today, outcomeDate, fmt = "%m/%d/%Y")

Arguments

Value

Returns the difference in days (integer) between asOfDate and min(outcomeDate, today)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

surv.time.max *Maximum survival time*

Description

Maximum survival time

Usage

```
surv.time.max(dt, startDate, maxDate, maxVal = 1e+10)
```
Arguments

surv.time.max 21

Value

Returns a list or data frame of intervals where NAs are backfilled with maximum observation lengths

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

ACT.COL, *5* AUC.MFROW, *3* AUC.OMA, *3* auc.perf, 2, *6, 7*, *17–19* auc.perf.base, *2*, 3, *11*, *13* AUC.PERIOD, *4, 5*, *7*, *10* AUC.THRESHOLD, *6, 7* backward.test.dates, 4 charge.save, 4 CORR.MIN, *13*, *19* forward.test.dates, 5 glm.test, 6 glm.validate.time, 7 high.corr, *13*, *18, 19* high.corr.df, *13*, *18* ID.COL, *5*, *11, 12*, *15, 16* lift.table, 8, *9* lift.table.save, 9 MAX.ITER, *18* mid.test.dates, 10 model.comp, 10 NS.CA.modelUtils, 11 NS.CA.modelUtils-package *(*NS.CA.modelUtils*)*, 11 odds.ratio.matrix, *12* odds.ratio.num, *12* odds.ratio.save, 12 odds.ratio.summary, *12* output.corr, 13 perf.clsf.stat, 14, *15*, *17–19* PERF.DIGITS, *3* ppv.sens.plot, *15* ppv.sens.risk, *9*, 15 PRED.COL, *5*, *11*

rand.surv, 16 rem.single.val.col, 16 rem.sparse.col, 17 run.cox.model, 17 run.glm.model, 18

SIG.LEV, *12*, *19* SPARSE.MIN, *17* surv.diff, 20 surv.time.max, 20

test.odds.ratio, *9*, *15* TIMESTAMP, *5*, *9*, *11–13*, *15*, *18, 19*

22

Package 'NS.CA.plotUtils'

April 12, 2016

Title plotting utilities

Version 3.0

Date 2015-01-28

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description Custom plotting functions.

Depends R ($>= 3.0.3$)

Imports plotrix, scales, ggplot2, NS.CA.dateUtils

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

Index 11

1

legend.quantile *Quantile legend generator*

Description

Generates quantile legend

Usage

legend.quantile(quantile, shift = 1)

Arguments

Value

Returns a list of strings describing quantiles

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

lm.eqn *Construct a linear regression equation string from* x *and* y *using* lm

Description

Construct a linear regression equation string from x and y using lm

Usage

lm.eqn(x, y)

Arguments

Value

Returns a string containing the regression equation obtained using $lm(y \sim x)$

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.plotUtils *NS.CA.plotUtils*

Description

Functions for graphing (predictive) model performance metrics and statistics and functional dependencies for model data

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

plots.order *Order a list of plots*

Description

Order a list of plots

Usage

plots.order(x, order)

Arguments

Value

Returns the original list of plots in the specified order

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

ppv.sens.plot *PPV and Sensitivity plot*

Description

Plots a PPV and Sensitivity plot using ggplot

Usage

```
ppv.sens.plot(x, xCol = "Percent.Flagged", ppvCol = "PPV",
 sensCol = "Sensitivity", xTickSeq = seq(0, 1, by = 0.1),
yTickSeq = xTickSeq, main = "Model performance metrics")
```
Arguments

Value

ggplot object

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

template.plot.hourly *Temporal plot template*

Description

Temporal plot template

Usage

```
template.plot.hourly(x, breaks, xTick, legPos = "bottom", size = 1,
colour = "black", linetype = "dotted", xAngle = 90)
```
theme.ribbon 5

Arguments

Value

Returns a ggplot object with the specified parameters

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

theme.ribbon *Create a* ggplot *theme for a ribbon plot*

Description

Create a ggplot theme for a ribbon plot

Usage

```
theme.ribbon(legPos = "bottom")
```
Arguments

legPos legend position (deafults to 'bottom')

Value

Returns a theme for a ribbon plot

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

title.plot *Plot title generator*

Description

Generates a plot title from the base title string, pavilion, season, date boundaries, quantile and modified acuity

Usage

title.plot(t, pavilion, season, dateFrom, dateTo, quantile, acute)

Arguments

Value

Returns an enhanced plot tile as a string

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

title.plot.elem *Plot title font*

Description

Plot title font

Usage

```
title.plot.elem()
```
Value

Returns element_text(size=12, colour = "black", face="bold", vjust=0.12)

two.ord.plot 7

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

two.ord.plot *Two-ordinate PPV and Sensitivity plot*

Description

Plots a two-ordinate PPV and Sensitivity plot using plotrix:twoord.plot

Usage

```
two.ord.plot(x, xCol = "Percent.Flagged", ly = "PPV", ry = "Sensitivity",
xlab = "Percentage of patients flagged", xTickSeq = seq(0, 1, by = 0.1),
lyTickSeq = seq(0, 1, by = 0.05), ryTickSeq = xTickSeq,
ylab = "Positive predictive value", rylab = "Sensitivity", lcol = "red",
rcol = "blue", main = "PPV / Sensitivity", type = "l",
do.first = "grid(ny=NA, col='black',lty='dotted')", ...)
```
Arguments

Value

None

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

x.mark.hourly *X-axis tick placement for a weekly hour-by-hour plot*

Description

X-axis tick placement for a weekly hour-by-hour plot

Usage

```
x.mark.hourly(mark, xStep = 4)
```
Arguments

Value

Returns a vector of tick mark coordinates as an equidistant sequence

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

x.tick.hourly *Tick marks for a weekly hour-by-hour plot*

Description

Tick marks for a weekly hour-by-hour plot

Usage

```
x.tick.hourly(xStep = 4)
```
Arguments

xStep tick interval (deafults to 4)

Value

Returns a vector of tick marks in the form of "<one-letter day of the week>.<hour of the day out of 24>"

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

y.scale 9

y.scale *Y axis scaling*

Description

Given a data frame, generates ticks for the y-axis and scales the graph using y.tick

Usage

```
y.scale(x, col, scale, step, minCol = "qDiffMin", maxCol = "qDiffMax",
absOut = "abs", diffOut = "diff", outNames = c(absOut, diffOut))
```
Arguments

Value

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

y.tick *Y axis ticks*

Description

Given a data vector, generates a sequence from min to max with a given step

Usage

y.tick(y, yStep, round = T)

Arguments

Value

Returns a sequence of #'s from min(y) to max(y) with a step of yStep

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

ggplot, *2*, *5*, *9*

legend.quantile, 2 lm.eqn, 2

NS.CA.plotUtils, 3 NS.CA.plotUtils-package *(*NS.CA.plotUtils*)*, 3

plots.order, 3 ppv.sens.plot, 4

template.plot.hourly, 4 theme.ribbon, 5 title.plot, 6 title.plot.elem, 6 two.ord.plot, 7

x.mark.hourly, 8 x.tick.hourly, 8

y.scale, 9 y.tick, *9*, 10

Package 'NS.CA.statUtils'

April 12, 2016

Title custom statistical utilities

Version 7.0

Date 2015-10-20

Author Daniel Chertok (This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.)

Maintainer Daniel Chertok <dchertok@northshore.org>

Description Custom statistical functions.

Depends R ($>= 3.0.3$)

Imports lattice, vcd, plyr, reshape2, ROCR

License GPL-3

LazyData true

RoxygenNote 5.0.1

R topics documented:

Index 13

1

2 high.corr

high.corr *High correlation elements*

Description

Plots the correlation matrix of a dataset, returns high correlation elements

Usage

```
high.corr(dataSet, minCor, text = "Correlation matrix", xArg = list(x =list(root = 90), scaleArg = c(cex = 1), plotFile = NA, width = 11,
 height = 8.5, fnCor = abs, ...)
```
Arguments

Value

Returns a matrix with off-diagonal high correlation elements (other entries included)

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

high.corr.df *High correlation data frame*

Description

Package the elements of a (high) correlation matrix into a data frame

Usage

high.corr.df(hiCor, minCor, fnCor = abs)

Arguments

Value

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

matt.corr *Matthews correlation coefficient for large numbers*

Description

Matthews correlation coefficient for large numbers

Usage

matt.corr(pred)

Arguments

pred ROCR::prediction object

Value

Mathews correlation coefficient

multi.category.stats *Relative benchmark contingency table statistics for categorical variables*

Description

For a categorical variable,

- select a benchmark level against which the rest will be measured
- create a 2 x 2 pairwise contingency table for the remaining levels against the benchmark
- calculate χ^2 p-values and frequencies of outcomes of interest

Usage

```
multi.category.stats(x, multiLevCol, outcome, rareThreshold, benchmark,
multiLevColOther = "Other", outcomeCol = c("1", "0"),
 fnSignif = fisher.test, level = 0.95, ...)
```
Arguments

Value

NS.CA.mode 5

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.mode *Mode(s) of the distribution*

Description

Mode(s) of the distribution

Usage

 $NS.CA.mode(x, fun = function(y) { \nightharpoonup y)}$

Arguments

Value

Returns the mode of the distribution

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

NS.CA.statUtils *NS.CA.statUtils*

Description

Statistical utilities for overriding similarly named functions from other packages (e.g., NS.CA.mode) and functions for describing (predictive) model performance metrics and statistics

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.logit *Odds ratio statistics for (primarily) numerical variables given the \ (prebuilt) model*

Description

Generates from a prebuilt model a single row data frame with unadjusted and adjusted odds ratios (OR) and confidence intervals (CI) for OR, mean (exponential) and standard (ln) logistic multivariate model errors

Usage

odds.ratio.logit(glmFit, coefInd, level = 0.95)

Arguments

Value

Returns a (single row) data frame with OR statistics as columns:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.matrix *Odds ratio statistics*

Description

Generates from a data frame with row-wise outcomes a comprehensive odds ratio (OR) data frame that includes ln(odds ratio), confidence interval (CI) and p-value for ln(OR), OR proper, CI(OR) and the validity indicator (valid if 1 is not inside the CI)

Usage

```
odds.ratio.matrix(x, outcome, oddsRatioCol = colnames(x), level = 0.95, ...)
```
odds.ratio.multi 7

Arguments

Value

Returns a data frame with variable names as row names and ln(OR) and OR statistics as columns:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.multi *Odds ratio statistics for (primarily) numerical variables*

Description

Generates from a data frame with row-wise outcomes a comprehensive odds ratio data frame that includes the unadjusted and adjusted odds ratios (OR) and confidence intervals (CI) for OR, mean (exponential) and standard (ln) logistic univariate model errors

Usage

odds.ratio.multi(glmFit, level = 0.95)

Arguments

Value

Returns a data frame with variable names as row names and OR and OR statistics as columns:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.num *Odds ratio statistics for (primarily) numerical variables*

Description

Generates from a data frame with row-wise outcomes a comprehensive odds ratio data frame that includes the unadjusted and adjusted odds ratios (OR) and confidence intervals (CI) for OR, mean (exponential) and standard (ln) logistic univariate model errors

Usage

```
odds.ratio.num(x, outcome, oddsRatioCol = colnames(x), level = 0.95)
```
Arguments

Value

Returns a data frame with variable names as row names and OR and OR statistics as columns:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.stat *Combine uni- and multivariate odds ratio statistics into one data frame*

Description

Merges a univariate odds ratio statistic with the multivariate one (calculated by odds.ratio.multi) and returns both as one data frame

Usage

```
odds.ratio.stat(glmFit, uniOddRatio, level = 0.95)
```
Arguments

Value

Returns a data frame with variable names as row names and OR and OR statistics as columns:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.summary *Construct a standardized odds ratio table with statistics*

Description

Standardize the ratio table created by odds.ratio.matrix to include only "IndPosCount", "Ind-PosPct", "IndPosOutcomePct", "Odds.Ratio", "CI.Lower", "CI.Upper", "Pr...z..", and "Validity"

Usage

odds.ratio.summary(oRi, x, statusCol)

Arguments

Value

Returns x without sparse rows

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

odds.ratio.table *Odds ratio statistics*

Description

Generates from a contingency table a comprehensive odds ratio data frame that includes ln(odds ratio), confidence interval (CI) and p-value for ln(OR), OR proper, CI(OR) and the validity indicator (valid if 1 is not inside the CI).

Usage

```
odds.ratio.table(m, level = 0.95, lwr = "lwr", upr = "upr",
oRat = "Log.Odds.Ratio")
```
Arguments

Value

Returns a data frame with variable names as row names and odds ratio (OR) statistics as columns:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

percent.NA.col *percentage of NAs in each column*

Description

percentage of NAs in each column

Usage

percent.NA.col(x)

Arguments

x matrix or data frame

Value

Returns a $1 \times \text{ncol}(x)$ matrix or data frame with percentages of NAs in x by column

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Description

For each specified element of the input data frame, computes for count and percentage of designated "positive" values, the # of positive outcomes, and the designated "positive" value of the element.

Usage

pos.stat(x, xNames, outcome, posCountMap, posOutcome = 1)

Arguments

Value

Returns a data frame whose columns contain:

Note

This code is intended for education and information sharing purposes only. NorthShore University HealthSystem is not responsible for any unintended consequences resulting from the implementation thereof. Please use at your own risk.

Index

high.corr, 2 high.corr.df, 3 matt.corr, 3 multi.category.stats, 4 NS.CA.mode, 5 NS.CA.statUtils, 5 NS.CA.statUtils-package *(*NS.CA.statUtils*)*, 5 odds.ratio.logit, 6 odds.ratio.matrix, 6, *10* odds.ratio.multi, 7 odds.ratio.num, 8 odds.ratio.stat, 9 odds.ratio.summary, 10 odds.ratio.table, *4*, *7*, 10 percent.NA.col, 11

pos.stat, 12

References

- [1] Peter C. Austin and Jack V. Tu. "Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality". In: Journal of Clinical Epidemiology 57 (2004), 1138:1146. URL: [http://scholar.google.com/](http://scholar.google.com/scholar_url?hl=en&q=http://uncwddas.googlecode.com/files/article2.pdf&sa=X&scisig=AAGBfm1boy8t65iA3pQUDj39ob3C2r8UtQ&oi=scholarr) [scholar_url?hl=en&q=http://uncwddas.googlecode.com/files/](http://scholar.google.com/scholar_url?hl=en&q=http://uncwddas.googlecode.com/files/article2.pdf&sa=X&scisig=AAGBfm1boy8t65iA3pQUDj39ob3C2r8UtQ&oi=scholarr) [article2.pdf&sa=X&scisig=AAGBfm1boy8t65iA3pQUDj39ob3C2r8Ut](http://scholar.google.com/scholar_url?hl=en&q=http://uncwddas.googlecode.com/files/article2.pdf&sa=X&scisig=AAGBfm1boy8t65iA3pQUDj39ob3C2r8UtQ&oi=scholarr)Q& [oi=scholarr](http://scholar.google.com/scholar_url?hl=en&q=http://uncwddas.googlecode.com/files/article2.pdf&sa=X&scisig=AAGBfm1boy8t65iA3pQUDj39ob3C2r8UtQ&oi=scholarr).
- [2] Rollin Brant. Biostatistics II. Mar. 24, 2004. url: [http://www.stat.](http://www.stat.ubc.ca/~rollin/teach/643w04/lec/) [ubc.ca/~rollin/teach/643w04/lec/](http://www.stat.ubc.ca/~rollin/teach/643w04/lec/).
- [3] Aran Canes. "Identifying superutilizers in the Medicaid population: A simple and powerful technique". In: Predictive Analytics World for Healthcare. Boston, MA, Oct 6-7, 2014.
- [4] Scott Chacon. Pro Git (Expert's Voice in Software Development). 2009. url: <http://git-scm.com/book>.
- [5] D.R. Cox. "Regression Models and Life-Tables". In: Journal of the Royal Statistical Society. Series B (Methodological) 34 (1972), 187:220.
- [6] Chris J Date. An introduction to database systems (7. ed.) Addison-Wesley-Longman, 2000, pp. I–XXII, 1–938. isbn: 978-0-201-68419-3.
- [7] D. Diez. Survival Analysis in R. June 2013. URL: https://www. [openintro.org/download.php?file=survival_analysis_in_R&](https://www.openintro.org/download.php?file=survival_analysis_in_R&referrer=/stat/surv.php) [referrer=/stat/surv.php](https://www.openintro.org/download.php?file=survival_analysis_in_R&referrer=/stat/surv.php).
- [8] A. Doyle. The Complete Sherlock Holmes (Knickerbocker Classics). Race Point Publishing, 2013. isbn: 8601404432897.
- [9] Vincent Driessen. A successful Git branching model. Jan. 5, 2010. URL: <http://nvie.com/posts/a-successful-git-branching-model/>.
- [10] A. Elixhauser et al. "Comorbidity Measures for Use with Administrative Data". In: Medical Care 1 (1998), 8:27.
- [11] G.M. Fitzmaurice, N.M. Laird, and J.H. Ware. Applied Longitudinal Analysis. Wiley Series in Probability and Statistics. Wiley, 2012. isbn: 9781118551790. url: [http://books.google.com/books?id=](http://books.google.com/books?id=0exUN1yFBHEC) [0exUN1yFBHEC](http://books.google.com/books?id=0exUN1yFBHEC).
- [12] John Fox and Sanford Weisberg. Cox proportional-hazard regression for survival data in R . Feb. 23, 2011. URL: $http://socserv.mcmaster.$ [ca/jfox/Books/Companion/appendix/Appendix-Cox-Regression.](http://socserv.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Cox-Regression.pdf) [pdf](http://socserv.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Cox-Regression.pdf).
- [13] B. French et al. Regression modeling of longitudinal binary outcomes with outcome-dependent observation times. May 13, 2014. URL: [https:](https://dbe.med.upenn.edu/biostat-research/sites/files/facultyfiles/french_cambridge_talk.pdf) [//dbe.med.upenn.edu/biostat-research/sites/files/facultyfi](https://dbe.med.upenn.edu/biostat-research/sites/files/facultyfiles/french_cambridge_talk.pdf)les/ [french_cambridge_talk.pdf](https://dbe.med.upenn.edu/biostat-research/sites/files/facultyfiles/french_cambridge_talk.pdf).
- [14] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 2013. isbn: 9781421407944. url: [http://books.google.com/books?](http://books.google.com/books?id=X5YfsuCWpxMC) [id=X5YfsuCWpxMC](http://books.google.com/books?id=X5YfsuCWpxMC).
- [15] D.W. Hosmer, S. Lemeshow, and R.X. Sturdivant. Applied Logistic Regression. Wiley Series in Probability and Statistics. Wiley, 2013. isbn: 9780470582473. url: [http://books.google.com/books?id=](http://books.google.com/books?id=64JYAwAAQBAJ) [64JYAwAAQBAJ](http://books.google.com/books?id=64JYAwAAQBAJ).
- [16] Max Kuhn. "Building Predictive Models in R Using the caret Package". In: Journal of Statistical Software 28.5 (Nov. 2008), pp. 1–26. issn: 1548-7660. url: <http://www.jstatsoft.org/v28/i05>.
- [17] James Leeper and UCLA. Choosing the Correct Statistical Test. 2014. URL: http://www.ats.ucla.edu/stat/mult_pkg/whatstat/ [choosestat.html](http://www.ats.ucla.edu/stat/mult_pkg/whatstat/choosestat.html).
- [18] Zhiguo Li Li et al. "Failure event prediction using the Cox proportional hazard model driven by frequent failure signatures". In: IIE transactions 39 (2007), 303:315. URL: [http://mpac.engr.wisc.edu/pdf/](http://mpac.engr.wisc.edu/pdf/paper27.pdf) [paper27.pdf](http://mpac.engr.wisc.edu/pdf/paper27.pdf).
- [19] K.-Y. Liang and S. Zeger. "Longitudinal Data Analysis Using Generalized Linear Models". In: Biometrika (1986), 13:22.
- [20] Scott Mitchell. The Eight Commandments of Source Code Control. Nov. 8, 2008. url: [http://scottonwriting.net/sowblog/archive/](http://scottonwriting.net/sowblog/archive/2008/11/13/163320.aspx) [2008/11/13/163320.aspx](http://scottonwriting.net/sowblog/archive/2008/11/13/163320.aspx).
- [21] D.C. Montgomery, E.A. Peck, and G.G. Vining. Introduction to Linear Regression Analysis. Wiley Series in Probability and Statistics. Wiley, 2012. isbn: 9780470542811. url: [http://books.google.com/books?](http://books.google.com/books?id=0yR4KUL4VDkC) [id=0yR4KUL4VDkC](http://books.google.com/books?id=0yR4KUL4VDkC).
- [22] D.S. Moore. Essential Statistics. W. H. Freeman, 2010. isbn: 9781429931595. url: <http://books.google.com/books?id=Pf8jAAAAQBAJ>.
- [23] NIST. NIST/SEMATECH e-Handbook of Statistical Methods. Oct. 30, 2013. url: [http://www.itl.nist.gov/div898/handbook/index.](http://www.itl.nist.gov/div898/handbook/index.htm) [htm](http://www.itl.nist.gov/div898/handbook/index.htm).

- [24] NPR. The Secret Recordings of Carmen Segarra. Sept. 26, 2014. URL: [http://www.thisamericanlife.org/radio- archives/episode/](http://www.thisamericanlife.org/radio-archives/episode/536/the-secret-recordings-of-carmen-segarra) [536/the-secret-recordings-of-carmen-segarra](http://www.thisamericanlife.org/radio-archives/episode/536/the-secret-recordings-of-carmen-segarra).
- [25] Therese Pigott. "A Review of Methods for Missing Data". In: Educational Research and Evaluation 7.4 (2001), 353:383. URL: [http://www.](http://www.stat.uchicago.edu/~eichler/stat24600/Admin/MissingDataReview.pdf) [stat.uchicago.edu/~eichler/stat24600/Admin/MissingDataRevi](http://www.stat.uchicago.edu/~eichler/stat24600/Admin/MissingDataReview.pdf)ew. [pdf](http://www.stat.uchicago.edu/~eichler/stat24600/Admin/MissingDataReview.pdf).
- [26] Maja Pohar and Janez Stare. "Making relative survival analysis relatively easy". In: Computers in biology and medicine 37 (2007), 1741:1749. url: [http://www.pauldickman.com/cancerepi/handouts/handouts](http://www.pauldickman.com/cancerepi/handouts/handouts_survival/Pohar2007.pdf)_ [survival/Pohar2007.pdf](http://www.pauldickman.com/cancerepi/handouts/handouts_survival/Pohar2007.pdf).
- [27] Maja Pohar Perme, Robin Henderson, and Janez Stare. "An approach to estimation in relative survival regression". In: Biostatistics 10.1 (2009), 136:146. url: [http://biostatistics.oxfordjournals.org/](http://biostatistics.oxfordjournals.org/content/10/1/136.full.pdf+html) [content/10/1/136.full.pdf+html](http://biostatistics.oxfordjournals.org/content/10/1/136.full.pdf+html).
- [28] W.H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, 2007. ISBN: 9780521880688. url: <http://apps.nrbook.com/empanel/index.html#>.
- [29] Rachel Schutt and Cathy O'Neil. Doing Data Science: Straight Talk from the Frontline. O'Reilly Media, Inc., 2013. ISBN: 1449358659, 9781449358655.
- [30] D. Strauss et al. "An analytical method for longitudinal mortality studies". In: Journal of insurance medicine (2000), 217:225.
- [31] D. Taeger and S. Kuhnt. Statistical Hypothesis Testing with SAS and R. Wiley, 2014. isbn: 9781118762608. url: [http://books.google.](http://books.google.com/books?id=mJaOAgAAQBAJ) [com/books?id=mJaOAgAAQBAJ](http://books.google.com/books?id=mJaOAgAAQBAJ).
- [32] W.M. Thorburn. *The Myth of Occam's Razor*. University Press, 1918. url: <http://books.google.com/books?id=1xP8NAAACAAJ>.
- [33] L.N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1997. isbn: 9780898719574. url: [http:](http://books.google.com/books?id=JaPtxOytY7kC) [//books.google.com/books?id=JaPtxOytY7kC](http://books.google.com/books?id=JaPtxOytY7kC).
- [34] S. Tzu and L. Giles. The Art of War by Sun Tzu Special Edition. The Art of War - Special Edition. El Paso Norte Press. isbn: 9781934255551. url: <http://books.google.com/books?id=T0HQOQVKWz8C>.
- [35] UCLA. What statistical analysis should I use? Statistical analyses using Stata. 2014. URL: http://www.ats.ucla.edu/stat/stata/ [whatstat/whatstat.htm#hsb](http://www.ats.ucla.edu/stat/stata/whatstat/whatstat.htm#hsb).

- [36] Joachim Vandekerckhove, Dora Matzke, and Eric-Jan Wagenmakers. Model Comparison and the Principle of Parsimony. 2014. URL: [https:](https://http://www.cidlab.com/prints/vandekerckhove2014model.pdf) [//http://www.cidlab.com/prints/vandekerckhove2014model.](https://http://www.cidlab.com/prints/vandekerckhove2014model.pdf) [pdf](https://http://www.cidlab.com/prints/vandekerckhove2014model.pdf).
- [37] X.H. Zhou, D.K. McClish, and N.A. Obuchowski. Statistical Methods in Diagnostic Medicine. second. Wiley Series in Probability and Statistics. Wiley, 2011. ISBN: 9780470183144. URL: [http://books.google.](http://books.google.com/books?id=NWGUtAdOT8kC) [com/books?id=NWGUtAdOT8kC](http://books.google.com/books?id=NWGUtAdOT8kC).

Index

 2×2 contingency table, 37 $F_1, 29$ F_1 score, 73 z-statistic, 110 z-test pooled two-proportion, 109 approximation accuracy, 22 augmented matrix, 15 binning categorical variables, 42 blood utilization, 41 boundary impenetrable, 27 Central Limit Theorem, 15 chronic obstructive pulmonary disorder, 31 classification, 7, 12 code development cooperative, 96 incremental, 96 code repositoty central, 96 code review, 99 condition number, 31 confidence interval, 19 COPD (chronic obstructive pulmonary disorder), 31 Cox proportional hazard model, 73 cumulative distribution function, 110 database

internal shared, 85 sandbox, 85

discrete-values function, 22 ejection fraction, 40 exogeneity, 14 extended markup, 85 fallback sequence, 29 generalized estimating equations, 73 goodness-of-fit, 16 Heart Failure End-of-life, 29 histogram, 30 homoscedasticity, 14 hospital admission, 42 Lift, 81 logistic regression model, univariate, 46 Matthews' correlation coefficient, 29, 73 maximum likelihood method, 23 model test backward, 76 forward, 76 last available period, 77 mid history, 76 mortality risk, 79 Newton-Raphson method, 23 nomenclature of input variables, 31 non-singular matrix, 31 numerical instability, 31 numerically singular matrix, 31

Occam's razor, 65

odds ratio, 37 one-vs.-the-rest algorithm, 41 Open Source, 23 outcome of interest, 23 outlier, 30 outliers, 105 partial likelihood function, 27 peer review, 99 post-processing, 85 predictive analytics, 7, 12, 96 predictor variables, 14 proportion, 109 regression, 7, 12 linear, 14 log-linear-log, 15 log-log, 15 logistic, 12 model, 22 loglinear , 15 residuals, 14 revision control, 96 Git, 96 repository, 96 ROC (receiver operating characteristic) curve, 78 semiparametric model, 25 server, 85

sigmoid function, 22 small perturbation, 31 sparse data, 41 survival analysis, 27 Cox analysis, 25 Cox prpoportional hazard model, 25 function, 26 probability, 25 time, 25 suvival Cox analysis model, 79 True negative rate, 73 True positive rate, 73 unit testing, 83 variable candidate predictor, 30 dependent, 14 independent, 14 input, 85 selection, 30 automated, 30 transformation, 64 variance finite, 14